

- Chapter 1 Introduction to Geometry
- Chapter 2 History of Geometry
- Chapter 3 Compass and Straightedge Constructions
- Chapter 4 Projective Geometry and Geometric Topology
- Chapter 5 Affine Geometry and Analytic Geometry
- Chapter 6 Conformal Geometry
- Chapter 7 Contact Geometry and Descriptive Geometry
- Chapter 8 Differential Geometry and Distance Geometry
- Chapter 9 Elliptic Geometry and Euclidean Geometry
- Chapter 10 Finite Geometry and Hyperbolic Geometry

A Course in Boolean Algebra

- Chapter 1 Introduction to Boolean Algebra
- Chapter 2 Boolean Algebras Formally Defined
- Chapter 3 Negation and Minimal Negation Operator
- Chapter 4 Sheffer Stroke and Zhegalkin Polynomial
- Chapter 5 Interior Algebra and Two-Element Boolean Algebra
- Chapter 6 Heyting Algebra and Boolean Prime Ideal Theorem
- Chapter 7 Canonical Form (Boolean algebra)
- Chapter 8 Boolean Algebra (Logic) and Boolean Algebra (Structure)

A Course in Riemannian Geometry

- Chapter 1 Introduction to Riemannian Geometry
- Chapter 2 Riemannian Manifold and Levi-Civita Connection
- Chapter 3 Geodesic and Symmetric Space
- Chapter 4 Curvature of Riemannian Manifolds and Isometry
- Chapter 5 Laplace–Beltrami Operator
- Chapter 6 Gauss's Lemma
- Chapter 7 Types of Curvature in Riemannian Geometry
- Chapter 8 Gauss-Codazzi Equations
- Chapter 9 Formulas in Riemannian Geometry

A Course in Triangle Geometry

- Chapter 1 Introduction to Triangle
- Chapter 2 Altitude and Angle Bisector Theorem
- Chapter 3 Centroid and Ceva's Theorem
- Chapter 4 Fermat Point and Heron's Formula
- Chapter 5 Incircle & Excircles of a Triangle and Inertia Tensor of Triangle
- Chapter 6 Law of Cosines and Law of Sines
- Chapter 7 Equilateral Triangle and Heronian Triangle
- Chapter 8 Integer Triangle and Morley's Trisector Theorem
- Chapter 9 Nine-Point Circle and Pythagorean Triple
- Chapter 10 Special Right Triangle and Triangle Center

- Chapter 1 Introduction to Algebraic Geometry
- Chapter 2 Algebraic Curve and Algebraic Surface
- Chapter 3 Algebraic Group
- Chapter 4 Algebraic Variety
- Chapter 5 Gröbner Basis and Canonical Bundle
- Chapter 6 Ample Line Bundle and Linear System of Divisors
- Chapter 7 Riemann–Roch Theorem and Intersection Number
- Chapter 8 Intersection Theory
- Chapter 9 Moduli Space and Geometric Invariant Theory
- Chapter 10 Bézout's Theorem

A First Course in Analytic Geometry

- Chapter 1 Introduction to Analytic Geometry
- Chapter 2 Coordinate System
- Chapter 3 Vector Space
- Chapter 4 Asymptote and Cartesian Coordinate System
- Chapter 5 Cross Product and Hyperbola
- Chapter 6 Isoperimetric Inequality and Conic Section

A First Course in Calculus

- Chapter 1 Calculus
- Chapter 2 Fundamental Theorem of Calculus and Mean Value Theorem
- Chapter 3 Calculus of Variations and Fractional Calculus
- Chapter 4 Vector Calculus and Differential Calculus
- Chapter 5 Limit of a Function
- Chapter 6 Integral

A First Course in Category and Duality Theories

- Chapter 1 Introduction to Category Theory
- Chapter 2 Functor and Natural Transformation
- Chapter 3 Topos
- Chapter 4 Category and Morphism
- Chapter 5 Specific Morphisms
- Chapter 6 Universal Property and Limit
- Chapter 7 Equivalence of Categories
- Chapter 8 Duality
- Chapter 9 Convex Conjugate and Dual Abelian Variety
- Chapter 10 Dual Polyhedron and Dual Space
- Chapter 11 Duality (Projective Geometry) and Eckmann-Hilton Duality
- Chapter 12 Hodge Dual and Poincaré Duality
- Chapter 13 Legendre Transformation and Morita Equivalence

A First Course in Category Theory

- Chapter 1 Introduction to Category Theory
- Chapter 2 Functor and Natural Transformation
- Chapter 3 Topos
- Chapter 4 Category and Morphism
- Chapter 5 Specific Morphisms
- Chapter 6 Universal Property and Limit
- Chapter 7 Equivalence of Categories
- Chapter 8 Important Concepts in Category Theory
- Chapter 9 Category of Rings

A First Course in Clifford Algebra

- Chapter 1 Clifford Algebra
- Chapter 2 Bivector
- Chapter 3 Classification of Clifford Algebras, Clifford Bundle and Clifford Module
- Chapter 4 Gamma Matrices and Higher-Dimensional Gamma Matrices
- Chapter 5 Quaternion
- Chapter 6 Geometric Algebra

A First Course in Conformal Geometry

- Chapter 1 Conformal Geometry and Riemann Surface
- Chapter 2 Ambient Construction and Fundamental Polygon
- Chapter 3 Extremal Length and Peirce Quincuncial Projection
- Chapter 4 Stereographic Projection
- Chapter 5 Lie Sphere Geometry and Möbius Transformation
- Chapter 6 Poincaré Metric
- Chapter 7 (2,3,7) Triangle Group and Bolza Surface
- Chapter 8 First Hurwitz Triplet and Fuchsian Group
- Chapter 9 Hurwitz's Automorphisms Theorem and Hyperbolic Geometry
- Chapter 10 Klein Quartic

- Chapter 1 Introduction to Connection
- Chapter 2 Affine Connection and Cartan Connection
- Chapter 3 Connection (Vector Bundle) and Connection (Principal Bundle)
- Chapter 4 Connection Form and Covariant Derivative
- Chapter 5 Ehresmann Connection and Holonomy
- Chapter 6 Levi-Civita Connection and Parallel Transport
- Chapter 7 Torsion Tensor

A First Course in Control Theory, Mathematical Modeling and Fuzzy Logic

- Chapter 1 Control Theory
- Chapter 2 Control System
- Chapter 3 Mathematical Model and Model Theory
- Chapter 4 Controllability
- Chapter 5 Fuzzy Logic
- Chapter 6 PID Controller
- Chapter 7 Fuzzy Control System
- Chapter 8 Artificial Neural Network

A Comprehensive Approach to Types of Business Entity

- Chapter 1 Introduction to Curvature
- Chapter 2 Gaussian Curvature and Mean Curvature
- Chapter 3 Curvature of Riemannian Manifolds and Darboux Frame
- Chapter 4 Frenet-Serret Formulas and Curvature of a Measure
- Chapter 5 Gauss-Codazzi Equations and Geodesic Curvature
- Chapter 6 Holonomy
- Chapter 7 Menger Curvature and Principal Curvature
- Chapter 8 Radius of Curvature (Applications) and Ricci Curvature
- Chapter 9 Scalar Curvature and Riemann Curvature Tensor
- Chapter 10 Sectional Curvature and Torsion Tensor

- Chapter 1 Differentiation of Trigonometric Functions
- Chapter 2 Differentiation under the Integral Sign
- Chapter 3 Differential of a Function
- Chapter 4 Calculus of Variations
- Chapter 5 Second Derivative
- Chapter 6 Notation for Differentiation
- Chapter 7 Logarithmic Differentiation
- Chapter 8 L'Hôpital's Rule
- Chapter 9 Introduction to Multivariable Calculus
- Chapter 10 Partial Derivative
- Chapter 11 Multiple Integral
- Chapter 12 Fundamental Theorems of Calculus in Multiple Dimensions
- Chapter 13 Second Partial Derivative Test and Implicit Function Theorem
- Chapter 14 Jacobian Matrix & Determinant and Matrix Calculus

- Chapter 1 Differential Calculus
- Chapter 2 Derivative
- Chapter 3 Change of Variables and Related Rates
- Chapter 4 Taylor's Theorem
- Chapter 5 Differentiation Rules
- Chapter 6 Product Rule
- Chapter 7 Quotient Rule
- Chapter 8 Chain Rule

- Chapter 1 Differential Geometry of Surfaces
- Chapter 2 Ruled Surface and Minimal Surface
- Chapter 3 Riemannian Manifold
- Chapter 4 Second Fundamental Form and Gauss's Lemma (Riemannian geometry)
- Chapter 5 Darboux Frame and Gaussian Curvature
- Chapter 6 Gauss-Codazzi Equations and Klein Quartic
- Chapter 7 Principal Curvature and Riemannian Connection on a Surface
- Chapter 8 Systoles of Surfaces and Theorema Egregium

A First Course in Differential Geometry

- Chapter 1 Introduction to Differential Geometry
- Chapter 2 Differential Geometry of Curves
- Chapter 3 Curvature
- Chapter 4 Riemannian Geometry and Symplectic Geometry
- Chapter 5 Contact Geometry, Complex Manifold and CR Manifold
- Chapter 6 Differential Geometry of Surfaces
- Chapter 7 Connection

A First Course in Differential Topology

Table of Contents

Introduction

- Chapter 1 Cerf Theory
- Chapter 2 Cobordism
- Chapter 3 Connection (Mathematics)
- Chapter 4 Contact Geometry
- Chapter 5 Differentiable Manifold
- Chapter 6 Differential Geometry
- Chapter 7 Eisenbud-Levine-Khimshiashvili Signature Formula
- Chapter 8 Exotic Sphere
- Chapter 9 Fiber Bundle
- Chapter 10 Frobenius Theorem (Differential Topology)
- Chapter 11 Morse Theory
- Chapter 12 Differential Form
- Chapter 13 Whitney Topologies and Whitney Embedding Theorem
- Chapter 14 Whitney Conditions and Transversality Theorem
- Chapter 15 Smale's Paradox and Orientability

A First Course in Elementary Algebra

- Chapter 1 Elementary Algebra
- Chapter 2 Quadratic Equation
- Chapter 3 Linear Equation
- Chapter 4 System of Linear Equations
- Chapter 5 Polynomial and Simultaneous Equations
- Chapter 6 Partial Fraction
- Chapter 7 Cube Root

- Chapter 1 Elementary Arithmetic
- Chapter 2 Subtraction and Addition
- Chapter 3 Multiplication
- Chapter 4 Division
- Chapter 5 Binary Numeral System
- Chapter 6 Cube (Algebra) and Decimal
- Chapter 7 Equality and Finger Binary
- Chapter 8 Fraction and Negative Number
- Chapter 9 Least Common Multiple and Parity of Zero

- Chapter 1 Elliptic Curve and Elliptic Function
- Chapter 2 Counting Points on Elliptic Curves and Doubling-Oriented Doche–Icart–Kohel Curve
- Chapter 3 Birch & Swinnerton-Dyer Conjecture and Hessian Form of an Elliptic Curve
- Chapter 4 Jacobian Curve and Montgomery Curve
- Chapter 5 Sato-Tate Conjecture and Schoof's Algorithm
- Chapter 6 Supersingular Elliptic Curve and Tripling-Oriented Doche-Icart-Kohel Curve
- Chapter 7 Twisted Edwards Curve and Weil Pairing
- Chapter 8 Carlson Symmetric Form, Elliptic Integral and Elliptic Rational Functions
- Chapter 9 Theta Function and Theta Representation

- Chapter 1 Introduction to Euclidean Geometry
- Chapter 2 Parallel Postulate
- Chapter 3 Pythagorean Theorem and Thales' Theorem
- Chapter 4 Riemannian Geometry and Manifold
- Chapter 5 Sphere
- Chapter 6 Elliptic Curve
- Chapter 7 Polyhedron
- Chapter 8 Curvature of Riemannian Manifolds and Isometry (Riemannian geometry)

- Chapter 1 Introduction to Euclidean Geometry
- Chapter 2 Parallel Postulate
- Chapter 3 Pythagorean Theorem and Thales' Theorem
- Chapter 4 Angle, Congruence and Similarity

A First Course in Exponentials

- Chapter 1 Exponentiation
- Chapter 2 Exponential Function
- Chapter 3 Exponential Decay and Exponential Growth
- Chapter 4 Exponential Map and Matrix Exponential
- Chapter 5 Exponential Family and Characterizations of the Exponential Function
- Chapter 6 e (Mathematical Constant) and Stretched Exponential Function
- Chapter 7 Euler's Formula

- Chapter 1 Fixed Point and Limit Set
- Chapter 2 Banach Fixed Point Theorem and Brouwer Fixed Point Theorem
- Chapter 3 Kakutani Fixed Point Theorem and Cycle Detection
- Chapter 4 Domain Theory and Fixed Point Combinator
- Chapter 5 Hairy Ball Theorem and Lotka–Volterra Equation
- Chapter 6 Sperner's Lemma and Thue–Morse Sequence
- Chapter 7 Attractor and Filled Julia Set
- Chapter 8 Julia Set and Periodic Points of Complex Quadratic Mappings

A First Course in Geometric Group Theory

- Chapter 1 Introduction to Geometric Group Theory
- Chapter 2 Mapping Class Group and Symmetric Group
- Chapter 3 Braid Group and Coxeter Group
- Chapter 4 Bass–Serre Theory and Dehn Function
- Chapter 5 Flexagon and Graph of Groups
- Chapter 6 Grigorchuk Group and Grushko Theorem
- Chapter 7 Iterated Monodromy Group and Out(F_n)
- Chapter 8 Small Cancellation Theory and Stallings Theorem about Ends of Groups
- Chapter 9 Train Track Map and Van Kampen Diagram
- Chapter 10 Free Group

A First Course in Homological Algebra

- Chapter 1 Introduction to Homological Algebra
- Chapter 2 Chain Complex
- Chapter 3 Exact Sequence and Five Lemma
- Chapter 4 Spectral Sequence
- Chapter 5 Group Cohomology
- Chapter 6 Sheaf
- Chapter 7 Triangulated Category and Derived Category
- Chapter 8 Injective Module and Projective Module
- Chapter 9 Ext Functor and Abelian Category

A First Course in Homology Mathematics

- Chapter 1 Homology and Cohomology
- Chapter 2 Homology Theory
- Chapter 3 Spectral Sequence
- Chapter 4 Euler Characteristic
- Chapter 5 Singular Homology and Cellular Homology
- Chapter 6 Mayer–Vietoris Sequence and Étale Cohomology
- Chapter 7 Sheaf Cohomology and De Rham Cohomology
- Chapter 8 Group Cohomology and Hodge Conjecture

A First Course in Homotopy Theory

- Chapter 1 Homotopy
- Chapter 2 Fundamental Group
- Chapter 3 Fiber Bundle
- Chapter 4 Hopf Fibration and Steenrod Algebra
- Chapter 5 Bott Periodicity Theorem
- Chapter 6 Homotopy Groups of Spheres
- Chapter 7 Triangulated Category

A First Course in Incidence Geometry & Order theory (Concepts & Applications)

- Chapter 1 Incidence Geometry and Configuration
- Chapter 2 Abstract Polytope and Bézout's Theorem
- Chapter 3 Fano Plane and Lie Sphere Geometry
- Chapter 4 Problem of Apollonius and Projective Plane
- Chapter 5 Introduction to Order Theory
- Chapter 6 Well–Order and Domain Theory
- Chapter 7 Partially Ordered Set
- Chapter 8 Hasse Diagram and Supremum
- Chapter 9 Completeness and Modular Lattice

A First Course in Knot Theory

- Chapter 1 Introduction to Knot Theory
- Chapter 2 Connected Sum
- Chapter 3 Alexander Polynomial and Biquandle
- Chapter 4 Borromean Rings and Braid Group
- Chapter 5 Brunnian Link and Satellite Knot
- Chapter 6 Figure-eight Knot
- Chapter 7 Knots & Graphs and Link Group
- Chapter 8 Linking Number
- Chapter 9 Trefoil Knot and Ménage Problem

A First Course in Logarithms and Exponentials

- Chapter 1 Introduction to Logarithm
- Chapter 2 Complex Logarithm and Logarithmic Scale
- Chapter 3 Natural Logarithm and Common Logarithm
- Chapter 4 Baker's Theorem and Binary Logarithm
- Chapter 5 E(mathematical Constant) and Log–Normal Distribution
- Chapter 6 Exponentiation
- Chapter 7 Exponential Function
- Chapter 8 Exponential Decay and Exponential Growth
- Chapter 9 Exponential Map and Matrix Exponential
- Chapter 10 Exponential Family and Characterizations of the Exponential Function

- Chapter 1 Introduction to Mathematics of General Relativity
- Chapter 2 Mathematics of General Relativity
- Chapter 3 Spacetime
- Chapter 4 Tensor
- Chapter 5 Tensor (Intrinsic Definition) and Spacetime Topology
- Chapter 6 Metric Tensor (General Relativity)
- Chapter 7 Tensor Field
- Chapter 8 Affine Connection
- Chapter 9 Spacetime Symmetries
- Chapter 10 Riemann Curvature Tensor
- Chapter 11 Frame Fields in General Relativity
- Chapter 12 ADM Formalism and Cartan Formalism
- Chapter 13 Covariant Derivative
- Chapter 14 Linearized Gravity and Penrose Diagram
- Chapter 15 Congruence
- Chapter 16 Energy Condition and Solving the Geodesic Equations
- Chapter 17 Numerical Relativity
- Chapter 18 Penrose–Hawking Singularity Theorems

- Chapter 1 Matrix
- Chapter 2 Determinant
- Chapter 3 Basic Operations of Matrices
- Chapter 4 Matrix Multiplication
- Chapter 5 Transformation Matrix
- Chapter 6 Eigenvalue, Eigenvector and Eigenspace
- Chapter 7 Fredholm Determinant & Functional Determinant
- Chapter 8 Leibniz Formula for Determinants & Jacobi's Formula
- Chapter 9 Quasideterminant

A First Course in Model and Set Theory (Concepts and Applications)

- Chapter 1 Introduction to Model Theory
- Chapter 2 Universal Algebra
- Chapter 3 Finite Model Theory and First–Order Logic
- Chapter 4 Reduct, Interpretation and Type in Model Theory
- Chapter 5 Forcing and Elementary Class
- Chapter 6 Transfer Principle
- Chapter 7 Embedding and Boolean–Valued Model
- Chapter 8 Axiomatic Set Theory
- Chapter 9 Ordinal Number
- Chapter 10 New Foundations Set Theory
- Chapter 11 Internal Set Theory
- Chapter 12 Naive Set Theory

A First Course in Model Theory

- Chapter 1 Introduction to Model Theory
- Chapter 2 Universal Algebra
- Chapter 3 Finite Model Theory and First-Order Logic
- Chapter 4 Reduct, Interpretation and Type in Model Theory
- Chapter 5 Forcing and Elementary Class
- Chapter 6 Transfer Principle
- Chapter 7 Embedding and Boolean-Valued Model
- Chapter 8 Constructible Universe
- Chapter 9 Von Neumann-Bernays-Gödel Set Theory

A First Course in Multivariable Calculus

- Chapter 1 Introduction to Multivariable Calculus
- Chapter 2 Partial Derivative
- Chapter 3 Multiple Integral
- Chapter 4 Fundamental Theorems of Calculus in Multiple Dimensions
- Chapter 5 Second Partial Derivative Test and Implicit Function Theorem
- Chapter 6 Jacobian Matrix & Determinant and Matrix Calculus
- Chapter 7 Total Derivative and Frenet–Serret Formulas
- Chapter 8 Derivative Rule for Inverses and Ridge Detection

A First Course in Non-Euclidean Geometry

- Chapter 1 Introduction to Non-Euclidean Geometry
- Chapter 2 Hyperbolic Geometry and Elliptic Geometry
- Chapter 3 Projective Geometry
- Chapter 4 Finite Geometry and Cross-Ratio
- Chapter 5 Duality (projective geometry) and Homogeneous Coordinates
- Chapter 6 Triangle Group

A First Course in Order theory

- Chapter 1 Introduction to Order Theory
- Chapter 2 Well-Order and Domain Theory
- Chapter 3 Partially Ordered Set
- Chapter 4 Hasse Diagram and Supremum
- Chapter 5 Completeness and Modular Lattice
- Chapter 6 Well-Quasi-Ordering and Semilattice
- Chapter 7 Heyting Algebra

A First Course in Projective Geometry

- Chapter 1 Introduction to Projective Geometry
- Chapter 2 Duality
- Chapter 3 Collineation and Complex Projective Space
- Chapter 4 Cross-Ratio and Direct Linear Transformation
- Chapter 5 Dual Curve and Fano Plane
- Chapter 6 Fubini–Study Metric and Grassmannian
- Chapter 7 Homogeneous Coordinates and Incidence
- Chapter 8 Inverse Curve and Inversive Ring Geometry
- Chapter 9 Möbius Transformation and Plücker Coordinates

A First Course in Propositional Calculus

- Chapter 1 Introduction to Propositional Calculus
- Chapter 2 Exclusive or and Implicational Propositional Calculus
- Chapter 3 Logical Biconditional and Logical Conjunction
- Chapter 4 Logical Consequence and Negation
- Chapter 5 Propositional Formula and Sheffer Stroke
- Chapter 6 Tautology (Logic) and Truth Table

- Chapter 1 Introduction to Riemannian Geometry
- Chapter 2 Riemannian Manifold and Levi-Civita Connection
- Chapter 3 Geodesic and Symmetric Space
- Chapter 4 Curvature of Riemannian Manifolds and Isometry
- Chapter 5 Laplace-Beltrami Operator
- Chapter 6 Gauss's Lemma
- Chapter 7 Types of Curvature in Riemannian Geometry
- Chapter 8 Conformal Geometry and Riemann Surface
- Chapter 9 Ambient Construction and Fundamental Polygon
- Chapter 10 Extremal Length and Peirce Quincuncial Projection
- Chapter 11 Stereographic Projection
- Chapter 12 Lie Sphere Geometry and Möbius Transformation
- Chapter 13 Poincaré Metric

A First Course in Smooth Functions

- Chapter 1 Smooth Function
- Chapter 2 Analytic Function and Distribution
- Chapter 3 Immersion and Jet (Mathematics)
- Chapter 4 Mollifier and Non-Analytic Smooth Function
- Chapter 5 Pushforward (Differential) and Ridge Detection
- Chapter 6 Taylor Series
- Chapter 7 Schwartz Space, Critical Point and Sard's Theorem

- Chapter 1 Introduction to Theorem
- Chapter 2 Banach–Tarski Paradox
- Chapter 3 Fundamental Theorem of Algebra and Fundamental Theorem of Calculus
- Chapter 4 Cramer's Rule and Fermat's Last Theorem
- Chapter 5 Stokes' Theorem and Pythagorean Theorem
- Chapter 6 Gödel's Incompleteness Theorems

A Theoretical Introduction to Probability Theory

- Chapter 1 Probability Theory
- Chapter 2 Random Variable
- Chapter 3 Probability Distribution
- Chapter 4 Independence
- Chapter 5 Expected Value
- Chapter 6 Variance and Covariance

- Chapter 1 Bernoulli Differential Equation and Exact Differential Equation
- Chapter 2 Cauchy–Euler Equation
- Chapter 3 Frobenius Method
- Chapter 4 Generalized Hypergeometric Function
- Chapter 5 Grothendieck–Katz P-Curvature Conjecture and Inseparable Differential Equation
- Chapter 6 Hypergeometric Function
- Chapter 7 Integral Curve and Integrating Factor
- Chapter 8 Isomonodromic Deformation
- Chapter 9 Lagrange's Identity (Boundary Value Problem) and Laser Diode Rate Equations
- Chapter 10 Magnus Expansion and Matrix Differential Equation
- Chapter 11 Method of Undetermined Coefficients
- Chapter 12 Numerical Ordinary Differential Equations
- Chapter 13 Spectral Theory of Ordinary Differential Equations

All the Mathematics You Missed

- Chapter 1 Linear Algebra and Vector Calculus
- Chapter 2 Differential Geometry and Real Analysis
- Chapter 3 General Topology and Probability
- Chapter 4 Complex Analysis and Abstract Algebra
- Chapter 5 Function (mathematics)
- Chapter 6 Differential Equation and Ordinary Differential Equation

An Introduction to Algebraic Curves

- Chapter 1 Introduction to Algebraic Curve
- Chapter 2 Elliptic Curve
- Chapter 3 Cubic Plane Curve
- Chapter 4 Conic Section
- Chapter 5 Abel–Jacobi Map and Bézout's Theorem
- Chapter 6 Cissoid of Diocles and ELSV Formula
- Chapter 7 Epicycloid and Goppa Code
- Chapter 8 Imaginary Hyperelliptic Curve and Klein Quartic
- Chapter 9 Modular Curve and Weierstrass's Elliptic Functions

- Chapter 1 Bilinear Form and Quadratic Form
- Chapter 2 Dot Product and Covariance
- Chapter 3 Inner Product Space and Symmetric Bilinear Form
- Chapter 4 Symplectic Vector Space and Degenerate Form
- Chapter 5 Arf Invariant and Clifford Algebra
- Chapter 6 E₈ Lattice and L-Theory
- Chapter 7 Orthogonal Group and Projective
- Chapter 8 Smith–Minkowski–Siegel Mass Formula and ɛ-quadratic Form

- Chapter 1 Complex Manifold
- Chapter 2 Enriques-Kodaira Classification
- Chapter 3 Hodge Theory
- Chapter 4 Moduli Space
- Chapter 5 Riemann Surface
- Chapter 6 Almost Complex Manifold
- Chapter 7 Calabi Conjecture and Canonical Ring
- Chapter 8 Coherent Sheaf and Complex Differential Form
- Chapter 9 Complex Projective Space
- Chapter 10 Fubini–Study Metric
- Chapter 11 Genus of a Multiplicative Sequence
- Chapter 12 Hermitian Manifold
- Chapter 13 Hermitian Symmetric Space and Hirzebruch–Riemann–Roch Theorem
- Chapter 14 Hyperkähler Manifold and Kähler Manifold
- Chapter 15 Pseudoholomorphic Curve and Stable Map

An Introduction to Discrete Groups & their Applications

- Chapter 1 Discrete Group and Automorphic Form
- Chapter 2 Frieze Group
- Chapter 3 Fuchsian Group and Kleinian Group
- Chapter 4 Lattice and Ping-Pong Lemma
- Chapter 5 Wallpaper Group
- Chapter 6 Langlands Program
- Chapter 7 Selberg Trace Formula and Shimura Variety
- Chapter 8 Modular Form

An Introduction to Graphs and Directed Graphs (Concepts & Applications)

- Chapter 1 Graph and Directed Graph
- Chapter 2 Connectivity (Graph Theory) and Line Graph
- Chapter 3 Hamiltonian Path and Eulerian Path
- Chapter 4 Graph Theory
- Chapter 5 Planar Graph and Graph Embedding
- Chapter 6 Graph Coloring and Four Color Theorem
- Chapter 7 Dominating Set and Matching (graph theory)
- Chapter 8 Edge Coloring and Turán's Theorem
- Chapter 9 Chromatic Polynomial and Heawood Graph

- Chapter 1 Introduction to Hilbert Space
- Chapter 2 Dual Space and Weak Convergence
- Chapter 3 Céa's Lemma and Compact Operator on Hilbert Space
- Chapter 4 Energetic Space and Euler-Maclaurin Formula
- Chapter 5 Reproducing Kernel Hilbert Space and Self-Adjoint Operator

An Introduction to Irrational and Transcendental Numbers

- Chapter 1 Irrational Number
- Chapter 2 Transcendental Number
- Chapter 3 Apéry's Constant and Golden Ratio
- Chapter 4 Incommensurable Magnitudes and Natural Logarithm of 2
- Chapter 5 Silver Ratio
- Chapter 6 Square Roots of 2, 5 and 3
- Chapter 7 Baker's Theorem and Lindemann-Weierstrass Theorem
- Chapter 8 e (Mathematical Constant)
- Chapter 9 Liouville Number and Schanuel's Conjecture

An Introduction to Lie Groups & Important Mathematical Concepts (Concepts & Applications)

- Chapter 1 Lie Group
- Chapter 2 Finite Difference, Group Action and Discrete Series Representation
- Chapter 3 Ordinary Differential Equations and Partial Differential Equations
- Chapter 4 Permutation Group and Differential Calculus
- Chapter 5 Group Isomorphism and Representation of a Lie Group
- Chapter 6 Differentiable Manifold

An Introduction to Logarithms

- Chapter 1 Introduction to Logarithm
- Chapter 2 Complex Logarithm and Logarithmic Scale
- Chapter 3 Natural Logarithm and Common Logarithm
- Chapter 4 Baker's Theorem and Binary Logarithm
- Chapter 5 E(mathematical Constant) and Log-Normal Distribution
- Chapter 6 Logarithmic Derivative, Differentiation & Spiral
- Chapter 7 Polylogarithm

An Introduction to Mathematical Analysis

- Chapter 1 Fourier Analysis
- Chapter 2 Measure
- Chapter 3 Dynamical System
- Chapter 4 Non-standard Analysis
- Chapter 5 Real Analysis, Complex Analysis and Functional Analysis
- Chapter 6 Function
- Chapter 7 Series

- Chapter 1 Matrix Decomposition and Singular Value Decomposition
- Chapter 2 Cholesky Decomposition and Eigendecomposition of a Matrix
- Chapter 3 Jordan Normal Form
- Chapter 4 LU Decomposition and QR Decomposition
- Chapter 5 Kernel and Moore–Penrose Pseudoinverse
- Chapter 6 Eigenvalue, Eigenvector & Eigenspace

An Introduction to Metric Geometry

- Chapter 1 Metric Space
- Chapter 2 CAT(K) Space and Cauchy Sequence
- Chapter 3 Complete Metric Space and Equilateral Dimension
- Chapter 4 Geodesic, Hausdorff Measure and Hausdorff Dimension
- Chapter 5 Hausdorff Distance and Hyperbolic Group
- Chapter 6 Injective Metric Space and Metric Tensor
- Chapter 7 Metric (Mathematics)
- Chapter 8 Tight Span and Ultralimit
- Chapter 9 Word Metric and Systolic Geometry

- Chapter 1 Introduction to Number Theory
- Chapter 2 Algebraic Number Theory and Analytic Number Theory
- Chapter 3 Arithmetic and Number
- Chapter 4 Fundamental Theorem of Arithmetic
- Chapter 5 Special Conjectures and Theorems in Number Theory

An Introduction to Numerical Methods & Important Mathematical Concepts

- Chapter 1 Numerical Analysis
- Chapter 2 Taylor Series
- Chapter 3 Round-off Error and Interval Arithmetic
- Chapter 4 False Position Method and Fixed Point Iteration
- Chapter 5 Secant Method and Newton's Method
- Chapter 6 Gaussian Elimination and Interpolation
- Chapter 7 Spline and Simpson's Rule
- Chapter 8 Numerical Differentiation and Runge-Kutta Methods
- Chapter 9 Eigenvalue, Eigenvector & Eigenspace and Partial Differential Equation

An Introduction to Ordinal and Cardinal Numbers

- Chapter 1 Ordinal Number
- Chapter 2 Cardinal Number
- Chapter 3 Large Countable Ordinal
- Chapter 4 Kleene's O and Order Topology
- Chapter 5 Ordinal Collapsing Function and Ordinal Notation
- Chapter 6 Transfinite Induction and Well-Order
- Chapter 7 Aleph Number and Beth Number
- Chapter 8 Countable Set and Finite Set
- Chapter 9 Cardinality of the Continuum and Inaccessible Cardinal
- Chapter 10 Cantor's Theorem and Cantor-Bernstein-Schroeder Theorem

An Introduction to Orthogonal Polynomials

- Chapter 1 Orthogonal Polynomials
- Chapter 2 Associated Legendre Polynomials and Chebyshev Polynomials
- Chapter 3 Hermite Polynomials and Legendre Polynomials
- Chapter 4 Macdonald Polynomial and Zernike Polynomials

- Chapter 1 Set (mathematics) and Real Number
- Chapter 2 Complex Number
- Chapter 3 Rational Function and Trigonometry
- Chapter 4 Trigonometric Functions and Conic Section
- Chapter 5 Exponential Function and Sequence
- Chapter 6 Binomial Theorem and Parametric Equation
- Chapter 7 Polar Coordinate System and Mathematical Induction

- Chapter 1 Introduction to Prime Numbers
- Chapter 2 Primality Test and Cunningham Chain
- Chapter 3 Dirichlet's Theorem on Arithmetic Progressions and Goldbach's Comet
- Chapter 4 Illegal Prime and Fürstenberg's Proof of the Infinitude of Primes
- Chapter 5 Generating Primes, Largest known Prime Number, Linnik's Theorem and Mills' Constant
- Chapter 6 Formula for Primes
- Chapter 7 Proof of Bertrand's Postulate and Brun's Theorem
- Chapter 8 Integer Factorization
- Chapter 9 Euler's Factorization Method and Dixon's Factorization Method
- Chapter 10 List of Prime Numbers

- Chapter 1 Introduction to Sampling
- Chapter 2 Sample Size
- Chapter 3 Sampling Bias and Gibbs Sampling
- Chapter 4 Importance Sampling, Stratified Sampling and Cluster Sampling
- Chapter 5 Sampling Distribution and Survey Sampling
- Chapter 6 Standard Error
- Chapter 7 Margin of Error and Order Statistic
- Chapter 8 Opinion Poll

An Introduction to Splines with Applications

- Chapter 1 Introduction to Spline
- Chapter 2 Spline Interpolation and Non-Uniform Rational B-Spline
- Chapter 3 Bézier Spline and B-Spline
- Chapter 4 De Boor's Algorithm, M-Spline and I-Spline
- Chapter 5 Bézier Curve and Cubic Hermite Spline
- Chapter 6 Monotone Cubic Interpolation and Polyharmonic Spline
- Chapter 7 Thin Plate Spline
- Chapter 8 Smoothing Spline and Bézier Surface

An Introduction to Statistics (Concepts and Applications)

- Chapter 1 Statistics
- Chapter 2 History of Statistics
- Chapter 3 Regression Analysis
- Chapter 4 Analysis of Variance
- Chapter 5 Random Variable
- Chapter 6 Sampling Bias
- Chapter 7 Levels of Measurement
- Chapter 8 Statistical Hypothesis Testing
- Chapter 9 Cross Validation

An Introduction to Systems of Formal Logic

- Chapter 1 Axiom and Axiomatic System
- Chapter 2 Boolean Logic and Rule of Inference
- Chapter 3 Formal Ethics
- Chapter 4 Propositional Calculus
- Chapter 5 First-Order Logic and Frege's Propositional Calculus
- Chapter 6 Infinitary Logic and Paraconsistent Logic
- Chapter 7 Second-Order Logic

An Introduction to Trigonometry

- Chapter 1 Introduction to Trigonometry
- Chapter 2 History of Trigonometry
- Chapter 3 Trigonometric Functions
- Chapter 4 Inverse Trigonometric Functions
- Chapter 5 Common Laws & Formulas in Trigonometry
- Chapter 6 Atan2 and Ptolemy's Theorem
- Chapter 7 Trigonometric Tables

- Chapter 1 Regression Analysis
- Chapter 2 Linear Regression and Least Squares
- Chapter 3 Analysis of Variance
- Chapter 4 Generalized Linear Model and Time Series
- Chapter 5 Box–Jenkins and Frequency Domain
- Chapter 6 Multivariate Analysis and Principal Component Analysis
- Chapter 7 Factor Analysis and Cluster Analysis
- Chapter 8 Robust Statistics

- Chapter 1 Numerical Ordinary Differential Equations
- Chapter 2 Boundary Element Method, Beeman's Algorithm and Adaptive Stepsize
- Chapter 3 Céa's Lemma
- Chapter 4 Constraint Algorithm
- Chapter 5 Compact Stencil, Courant–Friedrichs–Lewy Condition and Direct multiple Shooting Method
- Chapter 6 Crank–Nicolson Method
- Chapter 7 Discrete Laplace Operator and Discrete Poisson Equation
- Chapter 8 Euler Method
- Chapter 9 Finite Difference
- Chapter 10 Finite Difference Method
- Chapter 11 Finite Element Method
- Chapter 12 Bramble-Hilbert Lemma and Spectral Element Method
- Chapter 13 hp-FEM
- Chapter 14 Finite Element Method in Structural Mechanics
- Chapter 15 Interval Finite Element
- Chapter 16 Modal Analysis using FEM
- Chapter 17 Domain Decomposition Methods and Additive Schwarz Method

- Chapter 1 Numerical Ordinary Differential Equations
- Chapter 2 Boundary Element Method, Beeman's Algorithm and Adaptive Stepsize
- Chapter 3 Céa's Lemma
- Chapter 4 Constraint Algorithm
- Chapter 5 Compact Stencil, Courant–Friedrichs–Lewy Condition and Direct multiple Shooting Method
- Chapter 6 Crank–Nicolson Method
- Chapter 7 Discrete Laplace Operator and Discrete Poisson Equation
- Chapter 8 Euler Method
- Chapter 9 Finite Difference
- Chapter 10 Finite Difference Method
- Chapter 11 Finite Element Method in Structural Mechanics
- Chapter 12 Five-point Stencil, Euler–Maruyama Method & Explicit and Implicit Methods
- Chapter 13 Flux Limiter
- Chapter 14 Galerkin Method, Geometric Integrator and Godunov's Theorem

- Chapter 1 Analytic Number Theory
- Chapter 2 Algebraic Number Theory
- Chapter 3 Prime Number Theorem and Riemann Zeta Function
- Chapter 4 Chebotarev's Density Theorem and Hardy–Littlewood Circle Method
- Chapter 5 Quadratic Reciprocity and Ideal Class Group
- Chapter 6 Discriminant of an Algebraic Number Field and Ramification
- Chapter 7 Root of Unity and Gaussian Period
- Chapter 8 Class Number Problem

Arithmetic & its Applications

- Chapter 1 Introduction to Arithmetic
- Chapter 2 Rounding
- Chapter 3 Addition and Subtraction
- Chapter 4 Multiplication and Division
- Chapter 5 Modular Arithmetic and Fundamental Theorem of Arithmetic
- Chapter 6 Arithmetic Function
- Chapter 7 Interval Arithmetic

Basic Concepts, Theory and Decomposition of Matrices and Determinants

- Chapter 1 Matrix
- Chapter 2 Determinant
- Chapter 3 Basic Operations of Matrices
- Chapter 4 Matrix Multiplication
- Chapter 5 Transformation Matrix
- Chapter 6 Eigenvalue, Eigenvector and Eigenspace
- Chapter 7 Matrix Decomposition and Singular Value Decomposition
- Chapter 8 Cholesky Decomposition and Eigendecomposition of a Matrix
- Chapter 9 Jordan Normal Form
- Chapter 10 LU Decomposition and QR Decomposition
- Chapter 11 Kernel and Moore–Penrose Pseudoinverse

Basic Linear Algebra

- Chapter 1 Introduction to Linear Algebra
- Chapter 2 Matrix (Mathematics)
- Chapter 3 Vector Space and Inner Product Space
- Chapter 4 Determinant and Coordinate Vector
- Chapter 5 Hilbert Space

- Chapter 1 Finite Element Method
- Chapter 2 Extended Finite Element Method, First-Order Partial Differential Equation and Föppl–von Kármán Equations
- Chapter 3 Green's Function for the Three-variable Laplace Equation and Fundamental Solution
- Chapter 4 Groundwater Flow Equation and Generic Scalar Transport Equation
- Chapter 5 Hamilton–Jacobi Equation
- Chapter 6 Hasegawa–Mima Equation and Hamilton–Jacobi–Bellman Equation
- Chapter 7 Homotopy Principle, Homogenization and Holmgren's Uniqueness Theorem
- Chapter 8 Inhomogeneous Electromagnetic Wave Equation and Integrability Conditions for Differential Systems
- Chapter 9 Integrable System and Landau–Lifshitz Model
- Chapter 10 Large Eddy Simulation
- Chapter 11 Ishimori Equation, John's Equation, Lewy's Example and Lions–Lax–Milgram Theorem
- Chapter 12 Monge Cone, Monge–Ampère Equation, Fisher's Equation and Maximum Principle
- Chapter 13 Young–Laplace Equation and Weak Formulation

Basics of Harmonic Analysis

- Chapter 1 Fourier Analysis and Fourier Transform
- Chapter 2 Fourier Series
- Chapter 3 Discrete Fourier Transform and Discrete-Time Fourier Transform
- Chapter 4 Spherical Harmonics

Basics of Integration Mathematics

- Chapter 1 Integral
- Chapter 2 Riemann Integral and Lebesgue Integration
- Chapter 3 Improper Integral and Multiple Integral
- Chapter 4 Line Integral and Surface Integral
- Chapter 5 Symbolic Integration and Numerical Integration
- Chapter 6 Methods of Integration

Basics of Number Mathematics

- Chapter 1 Introduction to Numbers
- Chapter 2 Types of Numbers
- Chapter 3 Negative and Non-negative Numbers
- Chapter 4 Infinity
- Chapter 5 Mathematical Constant
- Chapter 6 Transcendental Number and Geometry of Numbers
- Chapter 7 Transcendence Theory and Analytic Number Theory

Basics of Numbers & Important Concepts of Number Theory

- Chapter 1 Introduction to Numbers
- Chapter 2 Types of Numbers
- Chapter 3 Negative and Non-negative Numbers
- Chapter 4 Infinity
- Chapter 5 Algebraic Number Theory
- Chapter 6 Analytic Number Theory
- Chapter 7 Geometry of Numbers
- Chapter 8 Transcendence Theory

Basics of Topology

Table of Contents

- Chapter 1 Open Set & Closed Set
- Chapter 2 Compact, Metric, Hausdorff and Uniform Spaces
- Chapter 3 Simplicial Complex and CW complex
- Chapter 4 Exact Sequence and Homological Algebra
- Chapter 5 Algebraic K-theory

Glossary

Basics of Trigonometry in Calculus

- Chapter 1 Inverse Trigonometric Functions and Trigonometric Integral
- Chapter 2 Trigonometric Substitution and Integrals of Trigonometric Functions
- Chapter 3 Trigonometric Functions
- Chapter 4 Trigonometric Identities

	Preface	VII
Chapter 1	Introduction to Algebra • Algebra • Algebraic Number	1 1 11
Chapter 2	 Branches of Algebra Commutative Algebra Elementary Algebra Operator Algebra Abstract Algebra Linear Algebra Universal Algebra Von Neumann Algebra 	15 15 19 33 34 39 52 57
Chapter 3	 Key Concepts of Algebra Identity Element Inverse Element Quasiregular Element Commutative Property Associative Property Distributive Property Isomorphism 	68 68 69 73 75 81 88 94
Chapter 4	 Major Theorems in Algebra Fundamental Theorem of Algebra Abel–Ruffini Theorem Binomial Theorem Chevalley–Warning Theorem Boolean Prime Ideal Theorem Rational Root Theorem Factor Theorem 	101 101 108 112 122 124 127 130
Chapter 5	 Functions Related to Algebra Algebraic Function Cubic Function Quintic Function Quartic Function 	134 134 138 159 167
Chapter 6	 Algebraic Structure: An Integrated Study Algebraic Structure Associative Algebra Non-associative Algebra Magma (Algebra) 	181 181 187 193 197

Beginning and Intermediate Algebra

	Group (Mathematics)SemigroupVertex Operator Algebra	202 221 229
Chapter 7	 Algebraic Equation: An Overview Algebraic Equation Linear Equation Polynomial Differential Equation Integral Equation Diophantine Equation Quadratic Formula 	243 243 245 251 267 275 278 283
Chapter 8	 Applications of Algebra Algebraic Geometry Exterior Algebra Symbolic Computation Permutation Algebraic Number Theory Algebraic K-theory 	295 295 307 326 330 349 359
Chapter 9	Evolution of Algebra	375

Permissions

Index

	Preface	VII
Chapter 1	Introduction to Calculus	1
Chapter 2	 Differential Calculus: An Integrated Study a. Differential Calculus b. Derivative c. Differential Equation d. Generalizations of the Derivative e. Differential (Infinitesimal) f. Differential of a Function 	14 14 20 38 46 53 56
Chapter 3	 Concepts of Differential Calculus a. Notation for Differentiation b. Second Derivative c. Third Derivative d. Change of Variables e. Implicit Function 	66 66 75 79 80 85
Chapter 4	Rules of Differentiationa. Differentiation Rulesb. Sum Rule in Differentiationc. Product Ruled. Chain Rulee. Power Rulef. Quotient Ruleg. General Leibniz Rule	91 91 97 100 108 119 122 123
Chapter 5	 Understanding Integral Calculus a. Integral b. Riemann Integral c. Improper Integral d. Multiple Integral e. Line Integral f. Surface Integral g. Numerical Integration h. Lebesgue Integration 	126 126 147 156 165 181 186 190 198
Chapter 6	Methods of Integration a. Methods of Contour Integration b. Disc Integration c. Shell Integration	211 211 227 229

Calculus and its Applications

d.	Integration by Substitution	230
e.	Trigonometric Substitution	235
f.	Order of Integration (Calculus)	238
g.	Integration by Reduction Formulae	242

Permissions

Index

Classes & Concepts of Prime Numbers

- Chapter 1 Introduction to Prime Number
- Chapter 2 Euclid's Theorem and Primality Test
- Chapter 3 Mersenne Prime
- Chapter 4 Formula for Primes and Prime Number Theorem
- Chapter 5 Prime-Counting Function and Prime Gap
- Chapter 6 Fermat Number
- Chapter 7 Happy Number and Repunit
- Chapter 8 Twin Prime and Wieferich Prime
- Chapter 9 Wolstenholme's Theorem

Concept of Infinity in Mathematics & its Applications

- Chapter 1 Introduction to Infinity
- Chapter 2 Cardinality of the Continuum and Surreal Number
- Chapter 3 Beth Number and Cantor's Diagonal Argument
- Chapter 4 Continuum Hypothesis and Countable Set
- Chapter 5 Extended Real Number Line and Hyperreal Number
- Chapter 6 Infinite Monkey Theorem and Infinitesimal
- Chapter 7 Real Projective Line
- Chapter 8 0.999...

Concepts of Discrete Mathematics & their Applications

- Chapter 1 Combinatorics
- Chapter 2 Digital Geometry and Discrete Geometry
- Chapter 3 Graph Theory and Information Theory
- Chapter 4 Optimization
- Chapter 5 Set and Game Theory

Different Areas of Mathematics & Further Mathematics

- Chapter 1 Areas of Mathematics
- Chapter 2 Major Divisions of Mathematics
- Chapter 3 Mathematical Analysis
- Chapter 4 Numerical Analysis
- Chapter 5 Mathematical Model
- Chapter 6 Discrete Mathematics
- Chapter 7 Geometry and Altitude (Triangle)
- Chapter 8 Triangle and Circle
- Chapter 9 Probability and Statistics
- Chapter 10 Cumulative Distribution Function and Exponential Function
- Chapter 11 Linear Combination and Random Variable

Different Areas of Mathematics

- Chapter 1 Areas of Mathematics
- Chapter 2 Major Divisions of Mathematics
- Chapter 3 Mathematical Analysis
- Chapter 4 Numerical Analysis
- Chapter 5 Mathematical Model
- Chapter 6 Discrete Mathematics
- Chapter 7 Important Fields in Mathematics
- Chapter 8 Geometry and Topology

Differential Calculus & Integration Mathematics

- Chapter 1 Differentiation and Derivative
- Chapter 2 Notation for Differentiation
- Chapter 3 Derivatives of Elementary Functions
- Chapter 4 Partial Derivative & Directional Derivative
- Chapter 5 Exterior & Symmetry of Second Derivative
- Chapter 6 Integral
- Chapter 7 Riemann Integral and Lebesgue Integration
- Chapter 8 Improper Integral and Multiple Integral
- Chapter 9 Line Integral and Surface Integral

Differential Equations and Calculus

- Chapter 1 Differential Equation
- Chapter 2 Partial Differential Equation
- Chapter 3 Ordinary Differential Equation
- Chapter 4 Stability Theory
- Chapter 5 Stochastic Differential Equation
- Chapter 6 Delay Differential Equation
- Chapter 7 Integro-Differential Equation and Liénard Equation
- Chapter 8 Lotka–Volterra Equation
- Chapter 9 Nahm Equations and Hybrid System
- Chapter 10 Jet Bundle
- Chapter 11 Differential Calculus
- Chapter 12 Derivative
- Chapter 13 Change of Variables and Related Rates
- Chapter 14 Taylor's Theorem
- Chapter 15 Differentiation Rules

- Chapter 1 Differential Equation
- Chapter 2 Partial Differential Equation
- Chapter 3 Ordinary Differential Equation
- Chapter 4 Stability Theory
- Chapter 5 Stochastic Differential Equation
- Chapter 6 Delay Differential Equation
- Chapter 7 Integro-Differential Equation and Liénard Equation
- Chapter 8 Lotka–Volterra Equation
- Chapter 9 Nahm Equations and Hybrid System
- Chapter 10 Jet Bundle
- Chapter 11 Method of Matched Asymptotic Expansions
- Chapter 12 Replicator Equation and Floquet Theory
- Chapter 13 Singular Solution and Structural Stability

Differential Geometry of Curves, Surfaces and Other Shapes

- Chapter 1 Introduction to Differential Geometry
- Chapter 2 Differential Geometry of Curves
- Chapter 3 Curvature
- Chapter 4 Riemannian Geometry and Symplectic Geometry
- Chapter 5 Contact Geometry, Complex Manifold and CR Manifold
- Chapter 6 Differential Geometry of Surfaces
- Chapter 7 Ruled Surface and Minimal Surface
- Chapter 8 Riemannian Manifold
- Chapter 9 Second Fundamental Form and Gauss's Lemma (Riemannian geometry)
- Chapter 10 Darboux Frame and Gaussian Curvature
- Chapter 11 Gauss-Codazzi Equations and Klein Quarti

Discrete Mathematics & its Applications

- Chapter 1 Introduction to Discrete Mathematics
- Chapter 2 Mathematical Logic and Model Theory
- Chapter 3 Set Theory and Combinatorics
- Chapter 4 Graph Theory and Discrete Probability Distribution
- Chapter 5 Number Theory and Abstract Algebra
- Chapter 6 Finite Difference
- Chapter 7 Discrete Fourier Transform

	Preface	VI
Chapter 1	Introduction to Discrete Mathematics	1
Chapter 2	Arithmetic • Arithmetic • Decimal • Binary Number • Indeterminate Form • Fundamental Theorem of Arithmetic • Greatest Common Divisor • Least Common Multiple	9 9 17 25 43 48 53 62
Chapter 3	 Probability Probability Sample Space Event (Probability Theory) Random Variable Expected Value Conditional Probability 	70 70 77 79 81 91 102
Chapter 4	 Sets : An Integrated Study Set (Mathematics) Element (Mathematics) Venn Diagram Subset Intersection (Set Theory) Complement (Set Theory) Ordered Pair Cartesian Product Simple Theorems in the Algebra of Sets 	111 111 120 122 130 133 137 142 148 154
Chapter 5	 Number Theory : A Comprehensive Study Number Theory Analytic Number Theory Algebraic Number Theory Baker's Theorem Chinese Remainder Theorem Pentagonal Number Theorem Six Exponentials Theorem 	158 158 174 180 198 203 216 220
Chapter 6	Graph Theory : An Overview Graph Theory Graph (Discrete Mathematics) 	225 225 233

Discrete Mathematics

	 Algebraic Graph Theory Extremal Graph Theory Clique (Graph Theory) Cycle (Graph Theory) Split (Graph Theory) Graph Factorization 	241 243 245 249 251 254
Chapter 7	Topology : An Essential Aspect • Topology • General Topology • Algebraic Topology • Differential Topology • Geometric Topology • Topological Data Analysis	258 258 266 278 282 283 283 283

Permissions

Index

Elementary Arithmetic & Important Concepts of Factorization

- Chapter 1 Introduction to Arithmetic
- Chapter 2 Rounding
- Chapter 3 Addition and Subtraction
- Chapter 4 Multiplication and Division
- Chapter 5 Modular Arithmetic and Fundamental Theorem of Arithmetic
- Chapter 6 Introduction to Factorization
- Chapter 7 Integer Factorization
- Chapter 8 Greatest Common Divisor and Singular Value Decomposition
- Chapter 9 Eigendecomposition of a Matrix and Cholesky Decomposition
- Chapter 10 Quadratic Sieve and Shor's Algorithm

Elementary Arithmetic and Algebra

- Chapter 1 Elementary Arithmetic
- Chapter 2 Subtraction and Addition
- Chapter 3 Multiplication
- Chapter 4 Division
- Chapter 5 Binary Numeral System
- Chapter 6 Cube (Algebra) and Decimal
- Chapter 7 Equality and Finger Binary
- Chapter 8 Elementary Algebra
- Chapter 9 Quadratic Equation
- Chapter 10 Linear Equation
- Chapter 11 System of Linear Equations
- Chapter 12 Polynomial and Simultaneous Equations

Elementary Linear Algebra & Vector Mathematics (Concepts & Applications)

- Chapter 1 Introduction to Linear Algebra
- Chapter 2 Matrix (Mathematics)
- Chapter 3 Vector Space and Inner Product Space
- Chapter 4 Determinant and Coordinate Vector
- Chapter 5 Euclidean Vector
- Chapter 6 Basic Properties of Euclidean Vector
- Chapter 7 Cross Product
- Chapter 8 Pseudovector & Vector Calculus

Elementary Special Functions in Mathematics

- Chapter 1 Absolute Value and Cube Root
- Chapter 2 Exponential Function and Floor & Ceiling Functions
- Chapter 3 Gudermannian Function and Heaviside Step Function
- Chapter 4 Hyperbolic Function and Inverse Hyperbolic Function
- Chapter 5 Inverse Trigonometric Functions and Trigonometric Functions

Elements and Analysis of Partial Differential Equations

- Chapter 1 Maxwell's Equations
- Chapter 2 Navier–Stokes Existence and Smoothness
- Chapter 3 Noether's Theorem
- Chapter 4 Method of Characteristics and Method of Lines
- Chapter 5 Ricci Flow
- Chapter 6 Secondary Calculus and Cohomological Physics, Screened Poisson Equation and Saint-Venant's Compatibility Condition
- Chapter 7 Separation of Variables
- Chapter 8 Spherical Harmonics
- Chapter 9 Variational Inequality and Underdetermined System

Essence of Statistics and Probability

- Chapter 1 Statistics
- Chapter 2 Probability Theory
- Chapter 3 Poisson Distribution
- Chapter 4 Geometric Distribution
- Chapter 5 Uniform Distribution and Discrete Probability Distribution
- Chapter 6 Normal Distribution
- Chapter 7 Exponential Distribution
- Chapter 8 Noncentral t-distribution
- Chapter 9 Random Variable
- Chapter 10 Probability Distribution
- Chapter 11 Probability Density Function
- Chapter 12 Mean
- Chapter 13 Variance
- Chapter 14 Correlation and Dependence
- Chapter 15 Statistical Inference
- Chapter 16 Confidence Interval
- Chapter 17 Time Series

	Preface	VII
Chapter 1	Introduction to Geometry	1
Chapter 2	 Branches of Geometry Absolute Geometry Algebraic Geometry Analytic Geometry Differential Geometry Projective Geometry Discrete Geometry Euclidean Geometry Non-Euclidean Geometry 	15 15 16 32 42 52 61 66 82
Chapter 3	 Key Concepts of Geometry Line (Geometry) Parallel (Geometry) Perpendicular Line Segment Diagonal Point (Geometry) Vertex Collinearity Plane (Geometry) Similarity (Geometry) Congruence (Geometry) Angle Polygon Curve Geometric Topology 	93 93 101 107 112 115 119 121 122 127 134 140 144 158 167 174
Chapter 4	Triangles: An OverviewTriangleList of Triangle Inequalities	180 180 230
Chapter 5	Circle: A Comprehensive Study Circle Arc (Geometry) Tangent Lines to Circles 	249 249 262 264
Chapter 6	 An Integrated Study of Quadrilateral Quadrilateral Rectangle Square Trapezoid 	276 276 290 295 302

Essentials of Geometry

Chapter 7	 Fundamental Study of Polyhedron Cone and Sphere Polyhedron Cone Sphere 	310 310 325 330
Chapter 8	 Understanding Trigonometry Trigonometry Trigonometric Functions 	341 341 349

Permissions

Index

Essentials of Mathematics

- Chapter 1 Mathematical Logic
- Chapter 2 Set Theory and Natural Number
- Chapter 3 Real Number and Complex Number
- Chapter 4 Mathematical Proof
- Chapter 5 Mathematical Proof Methods

	Preface	VII
Chapter 1	Introduction to Statistics	1
Chapter 2	 Essential Concepts of Statistics a. Statistical Dispersion b. Random Variable c. Errors and Residuals d. Probability Distribution e. Foundations of Statistics 	21 21 23 34 62 72
Chapter 3	Methodologies of Statistics a. Descriptive Statistics b. Statistical Inference c. Univariate Analysis d. Bivariate Analysis e. Multivariate Statistics f. Structured Data Analysis (Statistics)	85 85 87 94 95 96 100
Chapter 4	Measures of Central Tendency a. Mean b. Median c. Mode (Statistics)	102 102 126 140
Chapter 5	 Measures of Statistical Deviation: An Overview a. Variance b. Standard Deviation c. Average Absolute Deviation d. Median Absolute Deviation e. Interquartile Range f. Mean Absolute Difference g. Range (Statistics) 	148 148 165 183 187 189 193 197
Chapter 6	 Applications of Statistics a. Census b. Actuarial Science c. Demography d. Environmental Statistics e. Economic Statistics f. Statistical Process Control g. Statistical Mechanics 	200 200 209 215 221 222 222 222 227

Essentials of Statistics

237

237 250

Chapter 7 Evolution of Statistics

- a. History of Statisticsb. Founders of Statistics

Permissions

Index

Euclidean and Non-Euclidean Geometry

- Chapter 1 Introduction to Euclidean Geometry
- Chapter 2 Parallel Postulate
- Chapter 3 Pythagorean Theorem and Thales' Theorem
- Chapter 4 Introduction to Non–Euclidean Geometry
- Chapter 5 Hyperbolic Geometry and Elliptic Geometry
- Chapter 6 Projective Geometry
- Chapter 7 Finite Geometry and Cross–Ratio

Euclidean and Projective Geometry

- Chapter 1 Introduction to Euclidean Geometry
- Chapter 2 Parallel Postulate
- Chapter 3 Pythagorean Theorem and Thales' Theorem
- Chapter 4 Introduction to Projective Geometry
- Chapter 5 Duality
- Chapter 6 Collineation and Complex Projective Space
- Chapter 7 Cross–Ratio and Direct Linear Transformation
- Chapter 8 Dual Curve and Fano Plane
- Chapter 9 Fubini–Study Metric and Grassmannian
- Chapter 10 Homogeneous Coordinates and Incidence

- Chapter 1 Arthur Lyon Bowley and R. C. Bose
- Chapter 2 Harry Campion and Alexander Alexandrovich Chuprov
- Chapter 3 Colin Clark and George Dantzig
- Chapter 4 W. Edwards Deming and Karen Dunnell
- Chapter 5 Ronald Fisher and Stefano Franscini
- Chapter 6 Milton Friedman and Michel Gauquelin
- Chapter 7 Charles Roy Henderson and Joseph Hilbe
- Chapter 8 Leonhard Euler
- Chapter 9 Augustin–Louis Cauchy
- Chapter 10 John Von Neumann
- Chapter 11 David Hilbert
- Chapter 12 Stefan Banach

Foundations and Essentials of Mathematics

- Chapter 1 Mathematical Logic and Set Theory
- Chapter 2 Proof Theory and Model Theory
- Chapter 3 Computability Theory and Gödel's Incompleteness Theorems
- Chapter 4 Category Theory
- Chapter 5 Natural Number
- Chapter 6 Real Number and Complex Number
- Chapter 7 Mathematical Proof
- Chapter 8 Mathematical Proof Methods

Foundations of Mathematics

- Chapter 1 Mathematical Logic and Set Theory
- Chapter 2 Proof Theory and Model Theory
- Chapter 3 Computability Theory and Gödel's Incompleteness Theorems
- Chapter 4 Category Theory
- Chapter 5 Constructivism

Fractals & their Applications (Geometric Objects)

- Chapter 1 Iterated Function System
- Chapter 2 Sierpinski Triangle
- Chapter 3 Dragon Curve and Menger Sponge
- Chapter 4 Koch Snowflake and Mandelbrot Set

Functions Mathematics

- Chapter 1 Introduction to Function
- Chapter 2 Inverse Function
- Chapter 3 Special Functions & Implicit and Explicit Functions
- Chapter 4 Function Composition
- Chapter 5 Continuous Function
- Chapter 6 Hyperbolic Function & Trigonometric Functions
- Chapter 7 Arithmetic Function

Fundamental Concepts and Applications of Averages and Means

- Chapter 1 Average
- Chapter 2 Introduction to Mean
- Chapter 3 Calculation and Basic Concepts of Means
- Chapter 4 Fundamental Concepts of Averages and Means
- Chapter 5 Arithmetic Mean and Geometric Mean
- Chapter 6 Harmonic Mean and Inequality of Arithmetic & Geometric Means
- Chapter 7 Generalized Mean and Root Mean Square
- Chapter 8 Weighted Mean

- Chapter 1 Finite Element Method
- Chapter 2 Extended Finite Element Method, First-Order Partial Differential Equation and Föppl-von Kármán Equations
- Chapter 3 Green's Function for the Three-variable Laplace Equation and Fundamental Solution
- Chapter 4 Groundwater Flow Equation and Generic Scalar Transport Equation
- Chapter 5 Hamilton–Jacobi Equation
- Chapter 6 Hasegawa–Mima Equation and Hamilton–Jacobi–Bellman Equation
- Chapter 7 Homotopy Principle, Homogenization and Holmgren's Uniqueness Theorem
- Chapter 8 Inhomogeneous Electromagnetic Wave Equation and Integrability Conditions for Differential Systems
- Chapter 9 Integrable System and Landau–Lifshitz Model
- Chapter 10 Large Eddy Simulation
- Chapter 11 Maxwell's Equations
- Chapter 12 Navier-Stokes Existence and Smoothness
- Chapter 13 Noether's Theorem
- Chapter 14 Method of Characteristics and Method of Lines
- Chapter 15 Ricci Flow

Fundamental Concepts, Elements and Analysis of Partial Differential Equations

Chapter 16 - Secondary Calculus and Cohomological Physics, Screened Poisson Equation and Saint-Venant's Compatibility Condition

	Preface	VII
Chapter 1	Introduction to Mathematics	1
Chapter 2	Key Components of Mathematics	16
	Number	16
	Mathematical Structure	28
	Space (Mathematics)	29
	• Calculus	38
Chapter 3	Branches of Mathematics	51
	 Applied Mathematics 	51
	• Geometry	56
	• Trigonometry	65
	• Algebra	73
	Algebraic Geometry	82
Chapter 4	Processes of Mathematics	96
	Mathematical Proof	96
	Calculation	104
	Measurement	105
	• Shape	112
	Mathematical Constant	116
	Mathematical Object	131
Chapter 5	Mathematical Theories and Models	134
1	Probability Theory	134
	Graph Theory	141
	Order Theory	149
	Number Theory	157
	Pythagorean Theorem	172
	Set Theory	202
	Model Theory	209
	Mathematical Model	217
	Statistical Model	225
Chapter 6	Significant Approaches of Mathematics	230
	Statistics	230
	Probability	246
	Discrete Mathematics	253
	Mathematical Logic	261

Fundamentals of Mathematics

Chapter 7	Applications of Mathemathics	274
	Mathematical Physics	274
	Mathematical Economics	280

Permissions

Index

	Preface	VII
Chapter 1	Introduction to Number Theory	1
Chapter 2	Branches of Number TheoryAnalytic Number TheoryAlgebraic Number Theory	18 18 26
Chapter 3	Numbers: An Overview • Number • Natural Number • Rational Number • Integer • Prime Number • Real Number • Complex Number	53 53 65 72 77 82 100 108
Chapter 4	 Understanding Fractions Fraction (Mathematics) Unit Fraction Dyadic Rational Repeating Decimal Cyclic Number Egyptian Fraction 	132 132 147 150 152 163 173
Chapter 5	 Arithmetic Operations: An Integrated Study Algebraic Operation Addition Subtraction Method of Complements Multiplication Division (Mathematics) Euclidean Division 	182 182 183 202 212 219 226 232
Chapter 6	 Division and Multiplication Algorithm Division Algorithm Multiplication Algorithm Euclidean Algorithm Greatest Common Divisor Least Common Multiple Fundamental Theorem of Arithmetic 	236 236 243 255 281 288 293

Permissions

Index

- Chapter 1 Ordinary Differential Equation
- Chapter 2 Linear Differential Equation
- Chapter 3 Laplace Transform and Laplace's Method
- Chapter 4 Partial Differential Equation
- Chapter 5 Bernoulli Differential Equation and Exact Differential Equation
- Chapter 6 Cauchy–Euler Equation
- Chapter 7 Frobenius Method
- Chapter 8 Generalized Hypergeometric Function
- Chapter 9 Grothendieck–Katz P-Curvature Conjecture and Inseparable Differential Equation
- Chapter 10 Hypergeometric Function
- Chapter 11 Integral Curve and Integrating Factor
- Chapter 12 Isomonodromic Deformation
- Chapter 13 Lagrange's Identity (Boundary Value Problem) and Laser Diode Rate Equations
- Chapter 14 Magnus Expansion and Matrix Differential Equation

General Mathematics & Classification

- Chapter 1 Geometry
- Chapter 2 Algebra
- Chapter 3 Elementary Algebra
- Chapter 4 Algebraic Geometry
- Chapter 5 Topology
- Chapter 6 Differential Geometry
- Chapter 7 Areas of Mathematics

General Mathematics & Precalculus Analysis

- Chapter 1 Geometry
- Chapter 2 Algebra
- Chapter 3 Elementary Algebra
- Chapter 4 Algebraic Geometry
- Chapter 5 Topology
- Chapter 6 Set (mathematics) and Real Number
- Chapter 7 Complex Number
- Chapter 8 Rational Function and Trigonometry
- Chapter 9 Trigonometric Functions and Conic Section
- Chapter 10 Exponential Function and Sequence

Handbook of Geometry

- Chapter 1 Introduction to Geometry
- Chapter 2 History of Geometry
- Chapter 3 Euclidean Geometry
- Chapter 4 Compass and Straightedge Constructions
- Chapter 5 Projective Geometry and Geometric Topology
- Chapter 6 Algebraic Geometric
- Chapter 7 Analytic Geometry and Conformal Geometry

- Chapter 1 Introduction to Probability Distribution
- Chapter 2 Log-Normal Distribution and Pareto Distribution
- Chapter 3 Uniform Distribution (Continuous) and Binomial Distribution
- Chapter 4 Negative Binomial Distribution and Hypergeometric Distribution
- Chapter 5 Beta-Binomial Distributions and Poisson Distribution
- Chapter 6 Exponential Distribution and Student's T-Distribution
- Chapter 7 Gamma Distribution

Handbook of Quantum Algebra and Applications

- Chapter 1 C*-algebra
- Chapter 2 Affine Lie Algebra and Kac–Moody Algebra
- Chapter 3 Hopf Algebra
- Chapter 4 Quantum Group
- Chapter 5 Group Representation
- Chapter 6 Representation Theory of the Lorentz Group
- Chapter 7 Stone–von Neumann Theorem
- Chapter 8 Exterior Algebra
- Chapter 9 Superalgebra and Unitary Representation
- Chapter 10 Abstract Algebra
- Chapter 11 Universal Algebra
- Chapter 12 Heyting Algebra
- Chapter 13 Group Algebra and MV-Algebra
- Chapter 14 Lie Group

History and Philosophy of Mathematics

- Chapter 1 History of Mathematics
- Chapter 2 Philosophy of Mathematics
- Chapter 3 Mathematical Beauty and Constructivism
- Chapter 4 Logic and Mathematical Logic
- Chapter 5 Model Theory

- Chapter 1 Introduction to Indian Mathematics
- Chapter 2 Āryabhața's Sine Table & Aryabhatiya
- Chapter 3 Bharati Krishna Tirtha's Vedic Mathematics & Bhaskara I's Sine Approximation Formula
- Chapter 4 Chakravala Method
- Chapter 5 Katapayadi System & Madhava's Sine Table
- Chapter 6 Madhava Series & Principles of Hindu Reckoning
- Chapter 7 Shulba Sutras, Yuktibhasa & Jyā, Koti-Jyā and Utkrama-Jyā
- Chapter 8 Fibonacci Number

History of logic

- Chapter 1 History of Logic
- Chapter 2 Prior Analytics
- Chapter 3 Modal Logic
- Chapter 4 Indian Logic
- Chapter 5 Logic in Islamic Philosophy
- Chapter 6 Inductive Reasoning and Term Logic
- Chapter 7 Interpretation
- Chapter 8 Boolean Logic and First-Order Logic

History of Mathematics

Table of Contents

Introduction

- Chapter 1 Babylonian Mathematics and Egyptian Mathematics
- Chapter 2 Greek Mathematics and Chinese Mathematics

Chapter 3 - Indian Mathematics and Mathematics in Medieval Islam

Important Concepts in Set Theory

- Chapter 1 Set (Mathematics)
- Chapter 2 Power Set and Union
- Chapter 3 Axiom of Choice and Axiom of Determinacy
- Chapter 4 Axiom of Infinity and Continuum Hypothesis
- Chapter 5 Finite Set
- Chapter 6 Cartesian Product and Algebra of Sets
- Chapter 7 Implementation of Mathematics in Set Theory and Countable Set

Important Concepts of Factors and Fractions in Mathematics

- Chapter 1 Divisor and Greatest Common Divisor
- Chapter 2 Least Common Multiple and Euclidean Algorithm
- Chapter 3 Egyptian Fraction
- Chapter 4 Types of Fractions
- Chapter 5 Table of Divisors

Inferential Statistics and its Applications

- Chapter 1 Statistical Inference
- Chapter 2 Statistical Hypothesis Testing
- Chapter 3 Estimator and Maximum Likelihood
- Chapter 4 Bayesian Inference
- Chapter 5 Non-Parametric Statistics and Analysis of Variance
- Chapter 6 Regression Analysis
- Chapter 7 Confidence Interval

Integration Mathematics

Table of Contents

Introduction

- Chapter 1 Riemann and Lebesgue Integral
- Chapter 2 Fundamental Theorem of Calculus
- Chapter 3 Extensions of Integration
- Chapter 4 Differential Form
- Chapter 5 Symbolic and Numerical Integration

- Chapter 1 Partial Differential Equation
- Chapter 2 Camassa–Holm Equation and Boundary Value Problem
- Chapter 3 Cauchy–Riemann Equations
- Chapter 4 Navier–Stokes Equations
- Chapter 5 Derivation of the Navier–Stokes equations
- Chapter 6 Dirac Equation
- Chapter 7 Change of Variables and Bochner Space
- Chapter 8 Constraint Counting and Continuity Equation
- Chapter 9 D-module and Dirichlet Problem
- Chapter 10 Elliptic Boundary Value Problem
- Chapter 11 Schrödinger Equation

Introduction to Probability Theory & Important Mathematical Concepts

- Chapter 1 Probability Theory
- Chapter 2 Expected Value and Integral
- Chapter 3 Convergence of Random Variables and Weak Convergence (Hilbert space)
- Chapter 4 Sequence and Independence (probability theory)
- Chapter 5 Martingale
- Chapter 6 Stochastic Process
- Chapter 7 Law of Large Numbers and Central Limit Theorem

Introduction to Algebraic Structures

- Chapter 1 Algebraic Structure
- Chapter 2 Group (Mathematics)
- Chapter 3 Magma and Quasigroup
- Chapter 4 Semigroup and Lattice (Order)
- Chapter 5 Ring and Field (Mathematics)
- Chapter 6 Algebra over a Field
- Chapter 7 Lie Algebra and Universal Algebra

- Chapter 1 Introduction to Hypergeometric Function
- Chapter 2 Basic Hypergeometric Series & Confluent Hypergeometric Function
- Chapter 3 Generalized Hypergeometric Function & Meijer G-Function
- Chapter 4 Bilateral Hypergeometric Series & Frobenius Solution to the Hypergeometric Equation
- Chapter 5 Legendre Function & Bessel Function
- Chapter 6 Airy Function & Exponential Function

Introduction to Mean and its Applications in Mathematics & Statistics

- Chapter 1 Introduction to Mean
- Chapter 2 Arithmetic Mean and Geometric Mean
- Chapter 3 Harmonic Mean and Inequality of Arithmetic & Geometric Means
- Chapter 4 Generalized Mean and Root Mean Square
- Chapter 5 Weighted Mean
- Chapter 6 Regression toward the Mean and Variance

Introduction to Ordinary Differential Equations & Key Mathematical Concepts

- Chapter 1 Ordinary Differential Equation
- Chapter 2 Linear Differential Equation
- Chapter 3 Laplace Transform and Laplace's Method
- Chapter 4 Partial Differential Equation
- Chapter 5 Initial Value Problem and Convolution
- Chapter 6 Matrix

Introduction to Pi(π): The Mathematical Constant (Concepts & Applications)

Table of Contents

- Chapter 1 Introduction to Pi
- Chapter 2 Formulae Involving π
- Chapter 3 Numerical Approximations of π
- Chapter 4 Proof that $^{22}/_{7}$ Exceeds π and Proof that π is Irrational

Chapter 5 - Circle

- Chapter 6 Squaring the Circle
- Chapter 7 Wallis Product and Liu Hui's π Algorithm

Introductory Multilinear Algebra

Table of Contents

Introduction

- Chapter 1 Tensor
- Chapter 2 Dual Space
- Chapter 3 Inner Product Space
- Chapter 4 Multilinear Map and Cramer's Rule
- Chapter 5 Tensor (Intrinsic Definition)
- Chapter 6 Kronecker Delta and Tensor Contraction
- Chapter 7 Levi-Civita Symbol
- Chapter 8 Free Algebra and Tensor Algebra
- Chapter 9 Symmetric Algebra
- Chapter 10 Einstein Notation
- Chapter 11 Exterior Algebra
- Chapter 12 Paravector

- Chapter 1 Irrational Number
- Chapter 2 Transcendental Number
- Chapter 3 Apéry's Constant and Golden Ratio
- Chapter 4 Incommensurable Magnitudes and Natural Logarithm of 2
- Chapter 5 Silver Ratio
- Chapter 6 Square Roots of 2, 5 and 3
- Chapter 7 Continued Fraction
- Chapter 8 Generalized Continued Fraction
- Chapter 9 Complete Quotient and Convergence Problem
- Chapter 10 Euler's Continued Fraction Formula and Gauss's Continued Fraction
- Chapter 11 Gauss-Kuzmin-Wirsing Operator and Khinchin's Constant
- Chapter 12 Minkowski's Question Mark Function and Padé Approximant

- Chapter 1 Random Variable
- Chapter 2 Probability Density Function and Cumulative Distribution Function
- Chapter 3 Expected Value, Variance and Covariance
- Chapter 4 Jensen's Inequality and Correlation & Dependence
- Chapter 5 Conditional Expectation and Chebyshev's Inequality
- Chapter 6 Hypergeometric Distribution and Binomial Distribution
- Chapter 7 Poisson Distribution
- Chapter 8 Multivariate Normal Distribution

Key Concepts in Differential Calculus

- Chapter 1 Differentiation and Derivative
- Chapter 2 Notation for Differentiation
- Chapter 3 Derivatives of Elementary Functions
- Chapter 4 Partial Derivative & Directional Derivative
- Chapter 5 Exterior & Symmetry of Second Derivative
- Chapter 6 Generalizations of Derivative

- Chapter 1 Probability Interpretations and Markov Process
- Chapter 2 Frequency Probability and Maximum Likelihood
- Chapter 3 Bayesian Probability and Principle of Maximum Entropy
- Chapter 4 Statistical Inference
- Chapter 5 Confidence Interval and Estimator
- Chapter 6 Gauss-Markov Theorem and Likelihood-Ratio Test
- Chapter 7 Analysis of Variance and Bayesian Inference

Key Concepts in Probability Theory

- Chapter 1 Central Limit Theorem
- Chapter 2 Normal Distribution and Cumulative Distribution Function
- Chapter 3 Convergence of Random Variables
- Chapter 4 Characteristic Function
- Chapter 5 Law of Large Numbers
- Chapter 6 Expected Value

- Chapter 1 Arthur Lyon Bowley and R. C. Bose
- Chapter 2 Harry Campion and Alexander Alexandrovich Chuprov
- Chapter 3 Colin Clark and George Dantzig
- Chapter 4 W. Edwards Deming and Karen Dunnell
- Chapter 5 Ronald Fisher and Stefano Franscini
- Chapter 6 Milton Friedman and Michel Gauquelin
- Chapter 7 Charles Roy Henderson and Joseph Hilbe
- Chapter 8 Maurice Kendall and Karl Pearson
- Chapter 9 Nate Silver

Know All About Founders of Statistics

- Chapter 1 John Graunt and Thomas Bayes
- Chapter 2 Pierre-Simon Laplace
- Chapter 3 William Playfair and Carl Friedrich Gauss
- Chapter 4 Adolphe Quetelet and Florence Nightingale
- Chapter 5 Francis Galton and Thorvald N. Thiele
- Chapter 6 Charles Sanders Peirce and Francis Ysidro Edgeworth
- Chapter 7 John Tukey and Calyampudi Radhakrishna Rao

Logic & Mathematical Paradoxes

- Chapter 1 Accuracy Paradox & Apportionment Paradox
- Chapter 2 All Horses are the Same Color & Infinite Regress
- Chapter 3 Drinker Paradox & Lottery Paradox
- Chapter 4 Paradoxes of Material Implication
- Chapter 5 Raven Paradox
- Chapter 6 Unexpected Hanging Paradox
- Chapter 7 Banach–Tarski Paradox
- Chapter 8 Coastline Paradox & Paradoxical Set
- Chapter 9 Gabriel's Horn & Missing Square Puzzle
- Chapter 10 Smale's Paradox & Hausdorff Paradox
- Chapter 11 Borel-Kolmogorov Paradox & Berkson's Paradox
- Chapter 12 Boy or Girl Paradox & Burali-Forti Paradox
- Chapter 13 Elevator Paradox
- Chapter 14 Gödel's Incompleteness Theorems
- Chapter 15 Gambler's Fallacy

Mathematical Constants and Equations

- Chapter 1 Mathematical Constant
- Chapter 2 0 (number)
- Chapter 3 Pi (π)
- Chapter 4 e (mathematical constant)
- Chapter 5 Euler-Mascheroni Constant
- Chapter 6 Golden Ratio
- Chapter 7 Quadratic Equation
- Chapter 8 Linear Equation
- Chapter 9 Quadratic Form
- Chapter 10 Diophantine Equation
- Chapter 11 Cubic Function and Differential Equation

Mathematical Constants

- Chapter 1 Mathematical Constant
- Chapter 2 0 (number)
- Chapter 3 Pi (π)
- Chapter 4 *e* (mathematical constant)
- Chapter 5 Euler-Mascheroni Constant
- Chapter 6 Golden Ratio
- Chapter 7 Apéry's Constant, Ramanujan–Soldner Constant and Plastic Number
- Chapter 8 Rational Number
- Chapter 9 Irrational Number

Mathematical Identities

Table of Contents

Introduction

- Chapter 1 Capelli's Identity
- Chapter 2 Binet–Cauchy Identity, Brahmagupta–Fibonacci Identity and Green's Identities
- Chapter 3 Difference of Two Squares, Euler's Identity and Jacobi Triple Product
- Chapter 4 Differentiation Rules
- Chapter 5 Abel's Identity and Morrie's Law
- Chapter 6 Lagrange's Identity (Boundary Value Problem) and Liouville's Formula
- Chapter 7 Newton's Identities
- Chapter 8 Lagrange's Identity and Polarization Identity
- Chapter 9 Pascal's Rule, Polynomial Identity Ring and q-Vandermonde Identity
- Chapter 10 Pythagorean Trigonometric Identity
- Chapter 11 Squared Triangular Number, Tangent half-angle Formula and Vandermonde's Identity
- Chapter 12 Vector Calculus Identities

- Chapter 1 Mathematics of General Relativity
- Chapter 2 Frame Fields in General Relativity
- Chapter 3 ADM Formalism and Cartan Formalism
- Chapter 4 Covariant Derivative
- Chapter 5 Linearized Gravity and Penrose Diagram
- Chapter 6 Congruence
- Chapter 7 Energy Condition and Solving the Geodesic Equations
- Chapter 8 Numerical Relativity
- Chapter 9 Penrose–Hawking Singularity Theorems
- Chapter 10 Fermi–Walker Transport
- Chapter 11 Spacetime Symmetries
- Chapter 12 Einstein–Hilbert action and Scalar-vector-tensor Decomposition

Mathematical Proofs & Their Applications

- Chapter 1 Mathematical Proof
- Chapter 2 Proof Theory
- Chapter 3 Direct Proof and Mathematical Induction
- Chapter 4 Transposition and Proof by Contradiction
- Chapter 5 Constructive Proof and Proof by Exhaustion
- Chapter 6 Methods of Proof
- Chapter 7 Mathematical Fallacy
- Chapter 8 The Sum of the Reciprocals of the Primes Diverges
- Chapter 9 Law of Large Numbers
- Chapter 10 Probabilistic Method
- Chapter 11 Fermat's Little Theorem
- Chapter 12 Proof that $^{22}/_7$ exceeds π

Mathematics and Probability Theory Paradoxes

- Chapter 1 0.999... and $1 2 + 3 4 + \cdots$
- Chapter 2 Banach–Tarski Paradox and Braess's Paradox
- Chapter 3 Curry's Paradox and Skolem's Paradox
- Chapter 4 Bertrand Paradox (Probability) and Bertrand's Box Paradox
- Chapter 5 Birthday Problem and Exchange Paradox
- Chapter 6 Monty Hall Problem and Simpson's Paradox
- Chapter 7 Three Prisoners Problem and Two Envelopes Problem

- Chapter 1 Introduction to Mathematics of General Relativity
- Chapter 2 Mathematics of General Relativity
- Chapter 3 Spacetime
- Chapter 4 Tensor
- Chapter 5 Tensor (Intrinsic Definition) and Spacetime Topology
- Chapter 6 Metric Tensor (General Relativity)
- Chapter 7 Tensor Field
- Chapter 8 Affine Connection
- Chapter 9 Covariant Derivative
- Chapter 10 Spacetime Symmetries
- Chapter 11 Riemann Curvature Tensor
- Chapter 12 Stress–energy Tensor
- Chapter 13 Einstein Field Equations
- Chapter 14 Geodesic

Multi-dimensional Geometry

- Chapter 1 N-Dimensional Space and Fourth Dimensional Space
- Chapter 2 Seven-Dimensional Space and Simplex
- Chapter 3 Deriving the Volume of an n-Ball and 3-Sphere Dimension
- Chapter 4 Hypercube and Hypercone
- Chapter 5 Tesseract
- Chapter 6 n-Sphere and Polytope

Multilinear and Clifford Algebra

- Chapter 1 Tensor
- Chapter 2 Dual Space
- Chapter 3 Inner Product Space
- Chapter 4 Multilinear Map and Cramer's Rule
- Chapter 5 Tensor (Intrinsic Definition)
- Chapter 6 Kronecker Delta and Tensor Contraction
- Chapter 7 Levi–Civita Symbol
- Chapter 8 Free Algebra and Tensor Algebra
- Chapter 9 Clifford Algebra
- Chapter 10 Bivector
- Chapter 11 Classification of Clifford Algebras, Clifford Bundle and Clifford Module
- Chapter 12 Gamma Matrices and Higher–Dimensional Gamma Matrices

Number Theory & Modular Arithmetic

- Chapter 1 Introduction to Number Theory
- Chapter 2 Algebraic Number Theory and Analytic Number Theory
- Chapter 3 Arithmetic and Number
- Chapter 4 Fundamental Theorem of Arithmetic
- Chapter 5 Modular Arithmetic
- Chapter 6 Carmichael Number
- Chapter 7 Carmichael Function, Congruence Relation and Additive Polynomial
- Chapter 8 Cipolla's Algorithm and Discrete Logarithm
- Chapter 9 Cubic Reciprocity
- Chapter 10 Fermat Primality Test and Fermat's Little Theorem
- Chapter 11 Proofs of Fermat's Little Theorem
- Chapter 12 Chinese Remainder Theorem
- Chapter 13 Euler's Totient Function
- Chapter 14 Gauss's Lemma (number theory)

Numerical Linear Algebra

- Chapter 1 Matrix Decomposition
- Chapter 2 Sparse Matrix
- Chapter 3 Arnoldi Iteration
- Chapter 4 Cholesky Decomposition
- Chapter 5 Circulant Matrix
- Chapter 6 Conjugate Gradient Method
- Chapter 7 Derivation of the Conjugate Gradient Method
- Chapter 8 Eigenvalue Algorithm
- Chapter 9 Gaussian Elimination
- Chapter 10 Gauss-Seidel Method
- Chapter 11 Generalized Minimal Residual Method
- Chapter 12 Givens Rotation
- Chapter 13 Inverse Iteration
- Chapter 14 Jacobi Eigenvalue Algorithm
- Chapter 15 Jacobi Method
- Chapter 16 Kernel (Matrix)
- Chapter 17 Linear Least Squares (Mathematics)

Outline of Factorization in Mathematics

- Chapter 1 Introduction to Factorization
- Chapter 2 Integer Factorization
- Chapter 3 Greatest Common Divisor and Singular Value Decomposition
- Chapter 4 Eigendecomposition of a Matrix and Cholesky Decomposition
- Chapter 5 Quadratic Sieve and Shor's Algorithm
- Chapter 6 LU Decomposition and QR Decomposition
- Chapter 7 Table of Gaussian Integer Factorizations

Permutation and Combinatorics

- Chapter 1 Symmetric Group
- Chapter 2 Fisher-Yates Shuffle
- Chapter 3 Parity of a Permutation and Permutation Pattern
- Chapter 4 Permutation Matrix and Permutation Group
- Chapter 5 Random Permutation Statistics
- Chapter 6 Binomial Coefficient
- Chapter 7 Combinatorial Number System and Binomial Theorem
- Chapter 8 Multinomial Theorem and Twelvefold Way

Pi and Infinity in Mathematics (Concepts & Applications)

- Chapter 1 Introduction to Pi
- Chapter 2 Formulae Involving π
- Chapter 3 Numerical Approximations of π
- Chapter 4 Proof that $^{22}/_{7}$ Exceeds π and Proof that π is Irrational
- Chapter 5 Introduction to Infinity
- Chapter 6 Cardinality of the Continuum and Surreal Number
- Chapter 7 Beth Number and Cantor's Diagonal Argument
- Chapter 8 Continuum Hypothesis and Countable Set
- Chapter 9 Extended Real Number Line and Hyperreal Number
- Chapter 10 Infinite Monkey Theorem and Infinitesimal

Prime Numbers: Fundamentals, Theory, Classes & Concepts

- Chapter 1 Introduction to Prime Numbers
- Chapter 2 Primality Test and Cunningham Chain
- Chapter 3 Dirichlet's Theorem on Arithmetic Progressions and Goldbach's Comet
- Chapter 4 Illegal Prime and Fürstenberg's Proof of the Infinitude of Primes
- Chapter 5 Generating Primes, Largest known Prime Number, Linnik's Theorem and Mills' Constant
- Chapter 6 Proof of Bertrand's Postulate and Brun's Theorem
- Chapter 7 Integer Factorization
- Chapter 8 Euler's Factorization Method and Dixon's Factorization Method
- Chapter 9 Euclid's Theorem
- Chapter 10 Mersenne Prime
- Chapter 11 Formula for Primes and Prime Number Theorem
- Chapter 12 Prime-Counting Function and Prime Gap
- Chapter 13 Fermat Number
- Chapter 14 Happy Number and Repunit

	Preface	VII
Chapter 1	Understanding Statistics and Probability a. Statistics b. Probability	1 17
Chapter 2	 Key Concepts of Probability a. Random Variable b. Event (Probability Theory) c. Law of Total Probability d. Venn Diagram e. Mutual Exclusivity f. Probability Axioms 	26 35 45 47 55 57
Chapter 3	 Theory of Probability Distributions a. Probability Distribution b. Probability Theory c. Probability Mass Function d. Probability Density Function e. Cumulative Distribution Function f. Quantile Function g. Expected Value h. Variance 	61 61 70 76 78 88 93 93 97
Chapter 4	 Conditional Probability: A Comprehensive Study a. Conditional Probability b. Conditional Expectation c. Conditional Probability Distribution d. Regular Conditional Probability e. Disintegration Theorem f. Bayes' Theorem g. Rule of Succession h. Conditional Independence 	126 126 134 141 144 145 147 157 164
Chapter 5	 Interpretation of Probability a. Probability Interpretations b. Classical Definition of Probability c. Frequentist Probability d. Probabilistic Logic e. Propensity Probability f. Bayesian Probability 	169 169 176 178 182 184 186
Chapter 6	Stochastic Process: An Overview a. Stochastic Process	191 191

Probability and Statistics

	b. Wiener Processc. Ornstein–Uhlenbeck Processd. Random Walke. Poisson Point Process	196 206 211 223
Chapter 7	 Statistical Models: An Integrated Study a. Statistical Model b. Regression Analysis c. Bayesian Hierarchical Modeling d. Errors-in-Variables Models e. Generalized Linear Model f. Vector Generalized Linear Model 	248 248 251 259 263 272 280
Chapter 8	Mathematical Statistics a. Descriptive Statistics b. Nonparametric Statistics c. Probability Distribution	290 294 295 299
Chapter 9	 Statistical Inference and Hypothesis Testing a. Statistical Inference b. Bayesian Inference c. Asymptotic Theory d. Estimation Theory e. Statistical Hypothesis Testing 	308 308 314 326 329 335
Chapter 10	Evolution of Probability and Statisticsa. History of Statisticsb. History of Probability	356 356 368

Permissions

Index

Probability Distributions and Theory

- Chapter 1 Introduction to Probability Distribution
- Chapter 2 Log–Normal Distribution and Pareto Distribution
- Chapter 3 Uniform Distribution (Continuous) and Binomial Distribution
- Chapter 4 Negative Binomial Distribution and Hypergeometric Distribution
- Chapter 5 Beta–Binomial Distributions and Poisson Distribution
- Chapter 6 Central Limit Theorem
- Chapter 7 Normal Distribution and Cumulative Distribution Function
- Chapter 8 Convergence of Random Variables
- Chapter 9 Characteristic Function

- Chapter 1 Introduction to Propositional Calculus
- Chapter 2 Exclusive or and Implicational Propositional Calculus
- Chapter 3 Logical Biconditional and Logical Conjunction
- Chapter 4 Logical Consequence and Negation
- Chapter 5 Axiom and Axiomatic System
- Chapter 6 Boolean Logic and Rule of Inference
- Chapter 7 Formal Ethics
- Chapter 8 First–Order Logic and Frege's Propositional Calculus
- Chapter 9 Infinitary Logic and Paraconsistent Logic

Pure Mathematics & Important Mathematical Concepts

- Chapter 1 Pure Mathematics
- Chapter 2 Complex Number
- Chapter 3 Integral and Function
- Chapter 4 Variable and Continuous Function
- Chapter 5 Series
- Chapter 6 Logarithm and Exponential Function

Quantity & Number Mathematics

- Chapter 1 Natural Number
- Chapter 2 Integer
- Chapter 3 Rational Number and Real Number
- Chapter 4 Complex Number

Recreational Mathematics

Table of Contents

Introduction

- Chapter 1 Mathematical Puzzle and Four Fours
- Chapter 2 Verbal Arithmetic, Feynman Long Division Puzzles and Crossfigure
- Chapter 3 Flexagon
- Chapter 4 Magic Square
- Chapter 5 Sudoku
- Chapter 6 Mathematics of Sudoku
- Chapter 7 Nonogram
- Chapter 8 Polyomino
- Chapter 9 Latin Square
- Chapter 10 Graeco-Latin Square
- Chapter 11 Survo Puzzle
- Chapter 12 Slitherlink

Remarkable Mathematicians

- Chapter 1 Leonhard Euler
- Chapter 2 Augustin-Louis Cauchy
- Chapter 3 John Von Neumann
- Chapter 4 David Hilbert
- Chapter 5 Stefan Banach
- Chapter 6 Pythagoras
- Chapter 7 Blaise Pascal

Special Hypergeometric Functions

- Chapter 1 Bessel Polynomials
- Chapter 2 Bessel–Clifford Function
- Chapter 3 Beta Function
- Chapter 4 Chebyshev Polynomials
- Chapter 5 Elliptic Integral
- Chapter 6 Error Function
- Chapter 7 Exponential Function
- Chapter 8 Exponential Integral
- Chapter 9 Fresnel Integral
- Chapter 10 Gamma Function
- Chapter 11 Hermite Polynomials

Standard Deviation & Normal Distribution (Concepts & Applications)

- Chapter 1 Introduction to Standard Deviation
- Chapter 2 Unbiased Estimation of Standard Deviation
- Chapter 3 Chebyshev's Inequality and Standard Error (Statistics)
- Chapter 4 Bessel's Correction
- Chapter 5 Chi-square Distribution
- Chapter 6 Normal Distribution and Central Limit Theorem

- Chapter 1 Independence (probability theory)
- Chapter 2 Conditional Independence and Copula
- Chapter 3 Correlation and Dependence
- Chapter 4 Distance Correlation and Kendall Tau Rank Correlation Coefficient
- Chapter 5 Local Independence, Long-Range Dependency & Normally Distributed and Uncorrelated does not Imply Independent
- Chapter 6 Spearman's Rank Correlation Coefficient and Total Correlation
- Chapter 7 Autocorrelation
- Chapter 8 Covariance Matrix

Statistical Dependence and Key Concepts in Statistics

- Chapter 1 Correlation and Dependence
- Chapter 2 Pearson Product-Moment Correlation Coefficient
- Chapter 3 Rank Correlation Coefficients
- Chapter 4 Correlation does not Imply Causation
- Chapter 5 Partial Correlation
- Chapter 6 Autocorrelation
- Chapter 7 Key Concepts in Statistics

Theory and Boolean Algebra

- Chapter 1 Set (Mathematics)
- Chapter 2 Power Set and Union
- Chapter 3 Axiom of Choice and Axiom of Determinacy
- Chapter 4 Axiom of Infinity and Continuum Hypothesis
- Chapter 5 Finite Set
- Chapter 6 Introduction to Boolean Algebra
- Chapter 7 Boolean Algebras Formally Defined
- Chapter 8 Negation and Minimal Negation Operator
- Chapter 9 Sheffer Stroke and Zhegalkin Polynomial
- Chapter 10 Interior Algebra and Two-Element Boolean Algebra
- Chapter 11 Heyting Algebra and Boolean Prime Ideal Theorem

Triangle Geometry & Triangle Numbers

- Chapter 1 Introduction to Triangle
- Chapter 2 Altitude and Angle Bisector Theorem
- Chapter 3 Centroid and Ceva's Theorem
- Chapter 4 Fermat Point and Heron's Formula
- Chapter 5 Incircle & Excircles of a Triangle and Inertia Tensor of Triangle
- Chapter 6 Law of Cosines and Law of Sines
- Chapter 7 Equilateral Triangle and Heronian Triangle
- Chapter 8 Bell Number
- Chapter 9 Binomial Coefficient
- Chapter 10 Boustrophedon Transform and Eulerian Number
- Chapter 11 Gilbreath's Conjecture and Lah Number
- Chapter 12 Leibniz Harmonic Triangle and Narayana Number
- Chapter 13 Pascal Matrix
- Chapter 14 Pascal's Pyramid
- Chapter 15 Pascal's Simplex
- Chapter 16 Pascal's Triangle

Triangle Geometry & Trigonometry

- Chapter 1 Introduction to Triangle
- Chapter 2 Altitude and Angle Bisector Theorem
- Chapter 3 Centroid and Ceva's Theorem
- Chapter 4 Fermat Point and Heron's Formula
- Chapter 5 Incircle & Excircles of a Triangle and Inertia Tensor of Triangle
- Chapter 6 Law of Cosines and Law of Sines
- Chapter 7 Equilateral Triangle and Heronian Triangle
- Chapter 8 Introduction to Trigonometry
- Chapter 9 History of Trigonometry
- Chapter 10 Trigonometric Functions
- Chapter 11 Inverse Trigonometric Functions
- Chapter 12 Common Laws & Formulas in Trigonometry

Triangles of Numbers

- Chapter 1 Bell Number
- Chapter 2 Binomial Coefficient
- Chapter 3 Boustrophedon Transform and Eulerian Number
- Chapter 4 Gilbreath's Conjecture and Lah Number
- Chapter 5 Leibniz Harmonic Triangle and Narayana Number
- Chapter 6 Pascal Matrix
- Chapter 7 Pascal's Pyramid
- Chapter 8 Pascal's Simplex
- Chapter 9 Pascal's Triangle
- Chapter 10 Rencontres Numbers and Singmaster's Conjecture
- Chapter 11 Stirling Numbers of the First Kind
- Chapter 12 Stirling Numbers of the Second Kind
- Chapter 13 Romberg's Method and Triangular Number
- Chapter 14 Bell Polynomials

Types & Applications of Set Theory

- Chapter 1 Axiomatic Set Theory
- Chapter 2 Ordinal Number
- Chapter 3 New Foundations Set Theory
- Chapter 4 Internal Set Theory
- Chapter 5 Naive Set Theory
- Chapter 6 Descriptive Set Theory

Understanding Different Types of Geometry

- Chapter 1 Affine Geometry and Analytic Geometry
- Chapter 2 Conformal Geometry
- Chapter 3 Contact Geometry and Descriptive Geometry
- Chapter 4 Differential Geometry and Distance Geometry
- Chapter 5 Elliptic Geometry and Euclidean Geometry
- Chapter 6 Finite Geometry and Hyperbolic Geometry
- Chapter 7 Inversive Geometry and Lie Sphere Geometry
- Chapter 8 Non-Euclidean Geometry and Projective Geometry
- Chapter 9 Systolic Geometry and Taxicab Geometry

- Chapter 1 Quadratic Equation
- Chapter 2 Linear Equation
- Chapter 3 Quadratic Form
- Chapter 4 Diophantine Equation
- Chapter 5 Cubic Function and Differential Equation
- Chapter 6 Quartic Function and Quintic Equation

Understanding Mathematical Logic and its Applications

- Chapter 1 Introduction to Mathematical Logic
- Chapter 2 Propositional Calculus
- Chapter 3 Modal Logic
- Chapter 4 First-Order Logic
- Chapter 5 Computability Theory
- Chapter 6 Proof Theory and Model Theory

Units of Angle and Length in Mathematics

- Chapter 1 Degree
- Chapter 2 Grade (slope)
- Chapter 3 Minute of Arc and Binary Scaling
- Chapter 4 Radian
- Chapter 5 Angular Mil and Gradian
- Chapter 6 Steradian and Turn (geometry)
- Chapter 7 Astronomical unit
- Chapter 8 Caliber
- Chapter 9 Metre
- Chapter 10 Foot
- Chapter 11 Fathom and Chain (unit)
- Chapter 12 Inch, Centimetre and Millimetre
- Chapter 13 Kilometre and Yard

- Chapter 1 Acre
- Chapter 2 Barn (unit) and Circular Mil
- Chapter 3 Hectare
- Chapter 4 Dunam, Hide (unit), Morgen and Oxgang
- Chapter 5 Gallon
- Chapter 6 Cup (unit) and Bushel
- Chapter 7 Barrel
- Chapter 8 Barrel (unit) and Acre-foot
- Chapter 9 Cubic Foot, Cubic Inch, Cubic Metre and Cubic Ton
- Chapter 10 Litre
- Chapter 11 Lambda and Hobbit (unit)
- Chapter 12 Diverse Units of Volume

Units of Area, Volume, Angle and Length in Mathematics

- Chapter 1 Acre
- Chapter 2 Barn (unit) and Circular Mil
- Chapter 3 Hectare
- Chapter 4 Dunam, Hide (unit), Morgen and Oxgang
- Chapter 5 Gallon
- Chapter 6 Cup (unit) and Bushel
- Chapter 7 Barrel
- Chapter 8 Barrel (unit) and Acre-foot
- Chapter 9 Cubic Foot, Cubic Inch, Cubic Metre and Cubic Ton
- Chapter 10 Degree
- Chapter 11 Grade (slope)
- Chapter 12 Minute of Arc and Binary Scaling
- Chapter 13 Radian
- Chapter 14 Angular Mil and Gradian
- Chapter 15 Steradian and Turn (geometry)
- Chapter 16 Astronomical unit
- Chapter 17 Caliber
- Chapter 18 Metre
- Chapter 19 Foot

Universal Algebra

- Chapter 1 Introduction to Universal Algebra
- Chapter 2 Elements and Properties of Universal Algebra
- Chapter 3 Isomorphism Theorem
- Chapter 4 Operad Theory
- Chapter 5 Kernel
- Chapter 6 Variety and Basis
- Chapter 7 Model Theory and Free Object
- Chapter 8 Post's Lattice and Epimorphism
- Chapter 9 Distributive Lattice and Exterior Algebra

Universal and Boolean Algebra

- Chapter 1 Introduction to Universal Algebra
- Chapter 2 Elements and Properties of Universal Algebra
- Chapter 3 Isomorphism Theorem
- Chapter 4 Operad Theory
- Chapter 5 Kernel
- Chapter 6 Variety and Basis
- Chapter 7 Model Theory and Free Object
- Chapter 8 Introduction to Boolean Algebra
- Chapter 9 Boolean Algebras Formally Defined
- Chapter 10 Negation and Minimal Negation Operator
- Chapter 11 Sheffer Stroke and Zhegalkin Polynomial
- Chapter 12 Interior Algebra and Two-Element Boolean Algebra
- Chapter 13 Heyting Algebra and Boolean Prime Ideal Theorem

Unsolved Problems in Computer Science & Mathematics

- Chapter 1 P Versus NP Problem
- Chapter 2 One-Way Function
- Chapter 3 Aanderaa–Karp–Rosenberg Conjecture
- Chapter 4 Computational Complexity of Mathematical Operations
- Chapter 5 NC (Complexity), POPLmark Challenge and Unique Games Conjecture
- Chapter 6 NP-Complete
- Chapter 7 Complexity Class
- Chapter 8 Subset Sum Problem
- Chapter 9 Travelling Salesman Problem
- Chapter 10 Goldbach's Conjecture
- Chapter 11 Collatz Conjecture
- Chapter 12 Union-Closed Sets Conjecture and Barnette's Conjecture
- Chapter 13 Erdős-Faber-Lovász Conjecture and Inverse Galois Problem
- Chapter 14 Problems in Loop Theory and Quasigroup Theory
- Chapter 15 Hilbert's Problems
- Chapter 16 Hadamard's Maximal Determinant Problem
- Chapter 17 Gauss Circle Problem and Inscribed Square Problem
- Chapter 18 Burnside's Problem

- Chapter 1 Goldbach's Conjecture
- Chapter 2 Collatz Conjecture
- Chapter 3 Union-Closed Sets Conjecture and Barnette's Conjecture
- Chapter 4 Erdős–Faber–Lovász Conjecture and Inverse Galois Problem
- Chapter 5 Problems in Loop Theory and Quasigroup Theory
- Chapter 6 Hilbert's Problems
- Chapter 7 Hadamard's Maximal Determinant Problem
- Chapter 8 Gauss Circle Problem and Inscribed Square Problem
- Chapter 9 Burnside's Problem
- Chapter 10 Resolution of Singularities
- Chapter 11 Happy Ending Problem
- Chapter 12 Riemann Hypothesis

Unsolved Problems in Statistics

- Chapter 1 Behrens–Fisher Problem
- Chapter 2 Multiple Comparisons
- Chapter 3 Meta-analysis
- Chapter 4 Doomsday Argument
- Chapter 5 Exchange Paradox and Necktie Paradox
- Chapter 6 Sequential Analysis and Two Envelopes Problem
- Chapter 7 P-value and Fisher's Method
- Chapter 8 Accuracy Paradox, Random Error and Systematic Error
- Chapter 9 Errors and Residuals in Statistics
- Chapter 10 Errors-in-Variables Models
- Chapter 11 Estimation of Covariance Matrices
- Chapter 12 Erlang Distribution

Vector Calculus

- Chapter 1 Vector Calculus
- Chapter 2 Vector Field
- Chapter 3 Bivector
- Chapter 4 Conservative Vector Field
- Chapter 5 Cross Product
- Chapter 6 Curl (Mathematics)
- Chapter 7 Del
- Chapter 8 Divergence
- Chapter 9 Divergence Theorem
- Chapter 10 Euclidean Vector
- Chapter 11 Gradient

Vector Mathematics (Concepts & Applications)

- Chapter 1 Euclidean Vector
- Chapter 2 Basic Properties of Euclidean Vector
- Chapter 3 Cross Product
- Chapter 4 Pseudovector & Vector Calculus
- Chapter 5 Covariance and Contravariance of Vectors
- Chapter 6 Vector Bundle & Vector Notation